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Preface

These are the course notes for the “Introduction to R” course given by the Monash Bioinformatics
Platform on the 30th of November 2015.

Some of this material is derived from work that is Copyright © Software Carpentry1 with a CC BY 4.0
license2.

Data files we are working with are available from:

http://monashbioinformaticsplatform.github.io/2015-11-30-intro-r/

1http://software-carpentry.org/
2https://creativecommons.org/licenses/by/4.0/
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Chapter 1

Starting out in R

R is both a programming language and an interactive environment for statistics. Today we will be
concentrating on R as an interactive environment.

Working with R is primarily text-based. The basic mode of use for R is that the user types in a command
in the R language and presses enter, and then R computes and displays the result.

We will be working in RStudio1. This surrounds the console, where one enters commands and views the
results, with various conveniences. In addition to the console, RStudio provides panels containing:

• A text editor, where R commands can be recorded for future reference.
• A history of commands that have been typed on the console.
• A list of variables, which contain values that R has been told to save from previous commands.
• A file manager.
• Help on the functions available in R.
• A panel to show plots (graphs).

Open RStudio, click on the “Console” pane, type 1+1 and press enter. R displays the result of the
calculation. In this document, we will be showing such an interaction with R as below.

1+1

## [1] 2

+ is called an operator. R has the operators you would expect for for basic mathematics: + - * /. It also
has operators that do more obscure things.

* has higher precedence than +. We can use brackets if necessary ( ). Try 1+2*3 and (1+2)*3.

Spaces can be used to make code easier to read.

We can compare with == < > <= >=. This produces a “logical” value, TRUE or FALSE. Note the double
equals, ==, for equality comparison.

2 * 2 == 4

## [1] TRUE

There are also character strings such as "string".
1https://www.rstudio.com/
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Variables

A variable is a name for a value, such as x, current_temperature, or subject.id. We can create a new
variable by assigning a value to it using <-

weight_kg <- 55

RStudio helpfully shows us the variable in the “Environment” pane. We can also print it by typing the
name of the variable and hitting enter. In general, R will print to the console any object returned by a
function or operation unless we assign it to a variable.

weight_kg

## [1] 55

Examples of valid variables names: hello, hello_there, hello.there, value1. Spaces aren’t ok inside
variable names. Dots (.) are ok, unlike in many other languages.

We can do arithmetic with the variable:

# weight in pounds:
2.2 * weight_kg

## [1] 121

Tip

We can add comments to our code using the # character. It is useful to document our code in
this way so that others (and us the next time we read it) have an easier time following what
the code is doing.

We can also change a variable’s value by assigning it a new value:

weight_kg <- 57.5
# weight in kilograms is now
weight_kg

## [1] 57.5

If we imagine the variable as a sticky note with a name written on it, assignment is like putting the sticky
note on a particular value:

Assigning a new value to one variable does not change the values of other variables. For example, let’s
store the subject’s weight in pounds in a variable:

weight_lb <- 2.2 * weight_kg
# weight in kg...
weight_kg

## [1] 57.5
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# ...and in pounds
weight_lb

## [1] 126.5

and then change weight_kg:

weight_kg <- 100.0
# weight in kg now...
weight_kg

## [1] 100

# ...and weight in pounds still
weight_lb

## [1] 126.5

Since weight_lb doesn’t “remember” where its value came from, it isn’t automatically updated when
weight_kg changes. This is different from the way spreadsheets work.

Vectors

A “vector”2 of numbers is a collection of numbers. We call the individual numbers “elements” of the
vector.

We can make vectors with c( ), for example c(1,2,3), and do maths to them. c means “combine”.
Actually in R, numbers are just vectors of length one. R is obsesssed with vectors.

myvec <- c(10,20,30)
myvec + 1

## [1] 11 21 31

myvec + myvec

## [1] 20 40 60

length(myvec)

## [1] 3
2We use the word vector here in the mathematical sense, as used in linear algebra, not in any biological sense, and not in

the geometric sense.
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c(40, myvec)

## [1] 40 10 20 30

When we talk about the length of a vector, we are talking about the number of numbers in the vector.
Access elements of a vector with [ ], for example myvec[1] to get the first element.

myvec[1]

## [1] 10

myvec[2]

## [1] 20

myvec[2] <- 5
myvec

## [1] 10 5 30

We will also encounter vectors of character strings, for example "hello" or c("hello","world"). Also
we will encounter “logical” vectors, which contain TRUE and FALSE values. R also has “factors”, which are
categorical vectors, and behave very much like character vectors (think the factors in an experiment).

Challenge

Sometimes the best way to understand R is to try some examples and see what it does.
What happens when you try to make a vector containing different types, using c( )? Make a
vector with some numbers, and some words (eg. character strings like “test”, or “hello”).
Why does the output show the numbers surrounded by quotes " " like character strings are?

Because vectors can only contain one type of thing, R chooses a lowest common denominator type of
vector, a type that can contain everything we are trying to put in it. A different language might stop
with an error, but R tries to soldier on as best it can. A number can be represented as a character string,
but a character string can not be represented as a number, so when we try to put both in the same vector
R converts everything to a character string.

Functions

R has various functions, such as sum( ). We can get help on a function with, eg ?sum.

?sum

sum(myvec)

## [1] 45

Here we have called the function sum with the argument myvec.
Because R is a language for statistics, it has many built in statistics-related functions. We will also be
loading more specialized functions from “libraries” (also known as “packages”).
Some functions take more than one argument. Let’s look at the function rep, which means “repeat”, and
which can take a variety of different arguments. In the simplest case, it takes a value and the number of
times to repeat that value.
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rep(42, 10)

## [1] 42 42 42 42 42 42 42 42 42 42

As with many functions in R—which is obsessed with vectors—the thing to be repeated can be a vector
with multiple elements.

rep(c(1,2,3), 10)

## [1] 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

So far we have used positional arguments, where R determines which argument is which by the order in
which they are given. We can also give arguments by name. For example, the above is equivalent to

rep(c(1,2,3), times=10)

## [1] 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

rep(x=c(1,2,3), 10)

## [1] 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

rep(x=c(1,2,3), times=10)

## [1] 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

Arguments can have default values, and a function may have many different possible arguments that make
it do obscure things. For example, rep can also take an argument each=. It’s typical for a function to be
invoked with some number of positional arguments, which are always given, plus some less commonly
used arguments, typically given by name.

rep(c(1,2,3), each=3)

## [1] 1 1 1 2 2 2 3 3 3

rep(c(1,2,3), each=3, times=5)

## [1] 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3
## [36] 3 1 1 1 2 2 2 3 3 3

Lists

Vectors contain all the same kind of thing. Lists can contain different kinds of thing. Lists can even
contain vectors or other lists as elements.
We generally give the things in a list names. Try list(num=42, greeting="hello"). To access named
elements we use $.

mylist <- list(num=42, greeting="Hello, world")
mylist$greeting

## [1] "Hello, world"

This terminology is peculiar to R. Other languages make the same distinction but they may use different
words for vectors and lists.
Functions that need to return multiple outputs often do so as a list. We will be seeing examples of this
today, and in the RNA-Seq class.
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Overview of data types

We’ve seen several data types in this chapter, and will be seeing two more in the following chapters. This
section serves as an overview of data types in R and their typical usage.

Each data type has various ways it can be created and various ways it can be accessed. If we have data
in the wrong type, there are functions to “cast” it to the right type.

This will all make more sense once you have seen these data types in action.

Tip

If you’re not sure what type of value you are dealing with you can use class, or for more
detailed information str (structure).

vector

Vectors contain zero or more elements, all of the same basic type (“mode”).

Elements can be named (names), but often aren’t.

Access single elements: vec[5]

Take a subset of a vector: vec[c(1,3,5)] vec[c(TRUE,FALSE,TRUE,FALSE,TRUE)]

Vectors come in several different flavours.

numeric vector

Numbers. Internally stored as “floating point” so there is a limit to the number of digits accuracy, but
this is usually entirely adequate.

Examples: 42 1e-3 c(1,2,0.7)

Casting: as.numeric("42")

character vector

Character strings.

Examples: "hello" c("Let","the","computer","do","the","work")

Casting: as.character(42)

logical vector

TRUE or FALSE values.

Examples: TRUE FALSE T F c(TRUE,FALSE,TRUE)

factor vector

A categorical vector, where the elements can be one of several different “levels”. There will be more on
these in the chapter on data frames.

Creation/casting: factor(c("mutant","wildtype","mutant"), levels=c("wildtype","mutant"))
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list

Lists contain zero or more elements, of any type. Elements of a list can even be vectors with their own
multiple elements, or other lists. If your data can’t be bundled up in any other type, bundle it up in a list.

List elements can and typically do have names (names).

Access an element: mylist[[5]] mylist[["elementname"]] mylist$elementname

Creation: list(a=1, b="two", c=FALSE)

matrix

A matrix is a two dimensional tabular data structure in which all the elements are the same type. We will
typically be dealing with numeric matrices, but it is also possible to have character or logical matrices,
etc.

Matrix rows and columns may have names (rownames, colnames).

Access an element: mat[3,5] mat["arowname","acolumnname"]

Get a whole row: mat[3,]

Get a whole column: mat[,5]

Creation: matrix( )

Casting: as.matrix( )

data.frame

A data frame is a two dimensional tabular data structure in which the columns may have different types,
but all the elements in each column must have the same type.

Data frame rows and columns may have names (rownames, colnames). However in typical usage columns
are named but rows are not.3

Accessing elements, rows, and columns is the same as for matrices, but we can also get a whole column
using $.

Creation: data.frame(colname1=values1,colname2=values2,...)

Casting: as.data.frame( )

3For some reason, data frames use partial matching on row names, which can cause some very puzzling bugs.
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Chapter 2

Working with data in a matrix

Loading data

Our example data is quality measurements (particle size) on PVC plastic production, using eight different
resin batches, and three different machine operators.

The data set is stored in comma-separated value (CSV) format. Each row is a resin batch, and each
column is an operator. In RStudio, open pvc.csv and have a look at what it contains.

read.csv("data/intro-r/pvc.csv", row.names=1)

Tip

The location of the file is given relative to your “working directory”. You can see the location
of your working directory in the title of the console pane in RStudio. It is most likely “~”,
indicating your personal home directory. You can change working directory with setwd.
The filename “data/intro-r/pvc.csv” means from the current working directory, in the sub-
directory “data”, in the sub-directory “intro-r”, the file “pvc.csv”.
You can check that the file is actually in this location using the “Files” pane in the bottom
right corner of RStudio.
If you are working on your own machine rather than our training server, and downloaded and
unarchived the intro-r.zip file, the file may be in a different location.

We have called read.csv with two arguments: the name of the file we want to read, and which column
contains the row names. The filename needs to be a character string, so we put it in quotes. Assigning
the second argument, row.names, to be 1 indicates that the data file has row names, and which column
number they are stored in. If we don’t specify row.names the result will not have row names.

Tip

read.csv actually has many more arguments that you may find useful when importing your
own data in the future.

dat <- read.csv("data/intro-r/pvc.csv", row.names=1)

dat
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## Alice Bob Carl
## Resin1 36.25 35.40 35.30
## Resin2 35.15 35.35 33.35
## Resin3 30.70 29.65 29.20
## Resin4 29.70 30.05 28.65
## Resin5 31.85 31.40 29.30
## Resin6 30.20 30.65 29.75
## Resin7 32.90 32.50 32.80
## Resin8 36.80 36.45 33.15

class(dat)

## [1] "data.frame"

str(dat)

## 'data.frame': 8 obs. of 3 variables:
## $ Alice: num 36.2 35.1 30.7 29.7 31.9 ...
## $ Bob : num 35.4 35.4 29.6 30.1 31.4 ...
## $ Carl : num 35.3 33.4 29.2 28.6 29.3 ...

read.csv has loaded the data as a data frame. A data frame contains a collection of “things” (rows)
each with a set of properties (columns) of different types.

Actually this data is better thought of as a matrix1. In a data frame the columns contain different types
of data, but in a matrix all the elements are the same type of data. A matrix in R is like a mathematical
matrix, containing all the same type of thing (usually numbers).

R often but not always lets these be used interchangably. It’s also helpful when thinking about data to
distinguish between a data frame and a matrix. Different operations make sense for data frames and
matrices.

Data frames are very central to R, and mastering R is very much about thinking in data frames. However
when we get to RNA-Seq we will be using matrices of read counts, so it will be worth our time to learn
to use matrices as well.

Let us insist to R that what we have is a matrix. as.matrix “casts” our data to have matrix type.

mat <- as.matrix(dat)
class(mat)

## [1] "matrix"

str(mat)

## num [1:8, 1:3] 36.2 35.1 30.7 29.7 31.9 ...
## - attr(*, "dimnames")=List of 2
## ..$ : chr [1:8] "Resin1" "Resin2" "Resin3" "Resin4" ...
## ..$ : chr [1:3] "Alice" "Bob" "Carl"

Much better.
1We use matrix here in the mathematical sense, not the biological sense.
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Tip

Matrices can also be created de novo in various ways.
matrix converts a vector into a matrix with a specified number of rows and columns.
rbind stacks several vectors as rows one on top of another to form a matrix, or it can stack
smaller matrices on top of each other to form a larger matrix.
cbind similarly stacks several vectors as columns next to each other to form a matrix, or it
can stack smaller matrices next to each other to form a larger matrix.

Indexing matrices

We can check the size of the matrix with the functions nrow and ncol:

nrow(mat)

## [1] 8

ncol(mat)

## [1] 3

This tells us that our matrix, mat, has 8 rows and 3 columns.

If we want to get a single value from the matrix, we can provide a row and column index in square
brackets:

# first value in mat
mat[1, 1]

## [1] 36.25

# a middle value in mat
mat[4, 2]

## [1] 30.05

If our matrix has row names and column names, we can also refer to rows and columns by name.

mat["Resin4","Bob"]

## [1] 30.05

An index like [4, 2] selects a single element of a matrix, but we can select whole sections as well. For
example, we can select the first two operators (columns) of values for the first four resins (rows) like this:

mat[1:4, 1:2]

## Alice Bob
## Resin1 36.25 35.40
## Resin2 35.15 35.35
## Resin3 30.70 29.65
## Resin4 29.70 30.05
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The slice 1:4 means, the numbers from 1 to 4. It’s the same as c(1,2,3,4), and doesn’t need to be used
inside [ ].

1:4

## [1] 1 2 3 4

The slice does not need to start at 1, e.g. the line below selects rows 5 through 8:

mat[5:8, 1:2]

## Alice Bob
## Resin5 31.85 31.40
## Resin6 30.20 30.65
## Resin7 32.90 32.50
## Resin8 36.80 36.45

We can use vectors created with c to select non-contiguous values:

mat[c(1,3,5), c(1,3)]

## Alice Carl
## Resin1 36.25 35.3
## Resin3 30.70 29.2
## Resin5 31.85 29.3

We also don’t have to provide an index for either the rows or the columns. If we don’t include an index for
the rows, R returns all the rows; if we don’t include an index for the columns, R returns all the columns.
If we don’t provide an index for either rows or columns, e.g. mat[, ], R returns the full matrix.

# All columns from row 5
mat[5, ]

## Alice Bob Carl
## 31.85 31.40 29.30

# All rows from column 2
mat[, 2]

## Resin1 Resin2 Resin3 Resin4 Resin5 Resin6 Resin7 Resin8
## 35.40 35.35 29.65 30.05 31.40 30.65 32.50 36.45

Summary functions

Now let’s perform some common mathematical operations to learn about our data. When analyzing data
we often want to look at partial statistics, such as the maximum value per resin or the average value per
operator. One way to do this is to select the data we want to create a new temporary vector (or matrix,
or data frame), and then perform the calculation on this subset:

# first row, all of the columns
resin_1 <- mat[1, ]
# max particle size for resin 1
max(resin_1)
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## [1] 36.25

We don’t actually need to store the row in a variable of its own. Instead, we can combine the selection
and the function call:

# max particle size for resin 2
max(mat[2, ])

## [1] 35.35

R also has functions for other common calculations, e.g. finding the minimum, mean, median, and
standard deviation of the data:

# minimum particle size for operator 3
min(mat[, 3])

## [1] 28.65

# mean for operator 3
mean(mat[, 3])

## [1] 31.4375

# median for operator 3
median(mat[, 3])

## [1] 31.275

# standard deviation for operator 3
sd(mat[, 3])

## [1] 2.49453

Summarizing matrices

What if we need the maximum particle size for all resins, or the average for each operator? As the
diagram below shows, we want to perform the operation across a margin of the matrix:

To support this, we can use the apply function.
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Tip

To learn about a function in R, e.g. apply, we can read its help documention by running
help(apply) or ?apply.

apply allows us to repeat a function on all of the rows (MARGIN = 1) or columns (MARGIN = 2) of a
matrix. We can think of apply as collapsing the matrix down to just the dimension specified by MARGIN,
with rows being dimension 1 and columns dimension 2 (recall that when indexing the matrix we give the
row first and the column second).
Thus, to obtain the average particle size of each resin we will need to calculate the mean of all of the
rows (MARGIN = 1) of the matrix.

avg_resin <- apply(mat, 1, mean)

And to obtain the average particle size for each operator we will need to calculate the mean of all of the
columns (MARGIN = 2) of the matrix.

avg_operator <- apply(mat, 2, mean)

Since the second argument to apply is MARGIN, the above command is equivalent to apply(dat, MARGIN
= 2, mean).

Tip

Some common operations have more efficient alternatives. For example, you can calculate the
row-wise or column-wise means with rowMeans and colMeans, respectively.

Challenge - Slicing (subsetting) data

We can take slices of character vectors as well:

phrase <- c("I", "don't", "know", "I", "know")
# first three words
phrase[1:3]

## [1] "I" "don't" "know"

# last three words
phrase[3:5]

## [1] "know" "I" "know"

1. If the first four words are selected using the slice phrase[1:4], how can we obtain the
first four words in reverse order?

2. What is phrase[-2]? What is phrase[-5]? Given those answers, explain what
phrase[-1:-3] does.

3. Use a slice of phrase to create a new character vector that forms the phrase “I know I
don’t”, i.e. c("I", "know", "I", "don't").

Challenge - Subsetting data 2

Suppose you want to determine the maximum particle size for resin 5 across operators 2 and
3. To do this you would extract the relevant slice from the matrix and calculate the maximum
value. Which of the following lines of R code gives the correct answer?

(a) max(dat[5, ])
(b) max(dat[2:3, 5])
(c) max(dat[5, 2:3])
(d) max(dat[5, 2, 3])
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t test

R has many statistical tests built in. One of the most commonly used tests is the t test. Do the means of
two vectors differ significantly?

mat[1,]

## Alice Bob Carl
## 36.25 35.40 35.30

mat[2,]

## Alice Bob Carl
## 35.15 35.35 33.35

t.test(mat[1,], mat[2,])

##
## Welch Two Sample t-test
##
## data: mat[1, ] and mat[2, ]
## t = 1.4683, df = 2.8552, p-value = 0.2427
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -1.271985 3.338652
## sample estimates:
## mean of x mean of y
## 35.65000 34.61667

Actually, this can be considered a paired sample t-test, since the values can be paired up by operator. By
default t.test performs an unpaired t test. We see in the documentation (?t.test) that we can give
paired=TRUE as an argument in order to perform a paired t-test.

t.test(mat[1,], mat[2,], paired=TRUE)

##
## Paired t-test
##
## data: mat[1, ] and mat[2, ]
## t = 1.8805, df = 2, p-value = 0.2008
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -1.330952 3.397618
## sample estimates:
## mean of the differences
## 1.033333

Challenge - using t.test

Can you find a significant difference between any two resins?

When we call t.test it returns an object that behaves like a list. Recall that in R a list is a miscellaneous
collection of values.
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result <- t.test(mat[1,], mat[2,], paired=TRUE)
names(result)

## [1] "statistic" "parameter" "p.value" "conf.int" "estimate"
## [6] "null.value" "alternative" "method" "data.name"

result$p.value

## [1] 0.2007814

This means we can write software that uses the various results from t.test, for example performing a
whole series of t tests and reporting the significant results.

Plotting

The mathematician Richard Hamming once said, “The purpose of computing is insight, not numbers,”
and the best way to develop insight is often to visualize data. Visualization deserves an entire lecture (or
course) of its own, but we can explore a few of R’s plotting features.

Let’s take a look at the average particle size per resin. Recall that we already calculated these values
above using apply(mat, 1, mean) and saved them in the variable avg_resin. Plotting the values is
done with the function plot.

plot(avg_resin)

Above, we gave the function plot a vector of numbers corresponding to the average per resin across all
operators. plot created a scatter plot where the y-axis is the average particle size and the x-axis is the
order, or index, of the values in the vector, which in this case correspond to the 8 resins.

plot can take many different arguments to modify the appearance of the output. Here is a plot with
some extra arguments:
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plot(avg_resin,
xlab="Resin",
ylab="Particle size",
main="Average particle size per resin",
type="b")

Let’s have a look at two other statistics: the maximum and minimum particle size per resin. Additional
points or lines can be added to a plot with points or lines.

max_resin <- apply(mat, 1, max)
min_resin <- apply(mat, 1, min)

plot(avg_resin, type="b", ylim=c(25,40))
lines(max_resin)
lines(min_resin)

18



R doesn’t know to adjust the y limits if we add new data outside the original limits, so we needed to
specify ylim manually. This is R’s base graphics system. If there is time today, we will look at a more
advanced graphics package called “ggplot2” that handles this kind of issue more intelligently.

Challenge - Plotting data

Create a plot showing the standard deviation for each resin.
Advanced: Create a plot showing +/- two standard deviations about the mean.
Extension: Create similar plots for operator. Which dimension (resin or operator) is the
major source of variation in this data?

Saving plots

It’s possible to save a plot as a .PNG or .PDF from the RStudio interface with the “Export” button.
However if we want to keep a complete record of exactly how we create each plot, we prefer to do this
with R code.

Plotting in R is sent to a “device”. By default, this device is RStudio. However we can tem-
porarily send plots to a different device, such as a .PNG file (png("filename.png")) or .PDF file
(pdf("filename.pdf")).

pdf("test.pdf")
plot(avg_resin)
dev.off()

dev.off() is very important. It tells R to stop outputting to the pdf device and return to using the
default device. If you forget, your interactive plots will stop appearing as expected!

The file you created should appear in the file manager pane of RStudio, you can view it by clicking on it.
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Chapter 3

Working with data in a data frame

As we saw earlier, read.csv loads tabular data from a CSV file into a data frame.

diabetes <- read.csv("data/intro-r/diabetes.csv")

class(diabetes)

## [1] "data.frame"

head(diabetes)

## subject glyhb location age gender height weight frame
## 1 S1002 4.64 Buckingham 58 female 61 256 large
## 2 S1003 4.63 Buckingham 67 male 67 119 large
## 3 S1005 7.72 Buckingham 64 male 68 183 medium
## 4 S1008 4.81 Buckingham 34 male 71 190 large
## 5 S1011 4.84 Buckingham 30 male 69 191 medium
## 6 S1015 3.94 Buckingham 37 male 59 170 medium

colnames(diabetes)

## [1] "subject" "glyhb" "location" "age" "gender" "height"
## [7] "weight" "frame"

ncol(diabetes)

## [1] 8

nrow(diabetes)

## [1] 354

Tip

A data frame can also be created de novo from vectors, with the data.frame function. For
example

data.frame(foo=c(10,20,30), bar=c("a","b","c"))

## foo bar
## 1 10 a
## 2 20 b
## 3 30 c
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Tip

A data frame can have both column names (colnames) and rownames (rownames). However,
the modern convention is for a data frame to use column names but not row names. Typically
a data frame contains a collection of items (rows), each having various properties (columns).
If an item has an identifier such as a unique name, this would be given as just another column.

Indexing data frames

As with a matrix, a data frame can be accessed by row and column with [,].

One difference is that if we try to get a single row of the data frame, we get back a data frame with one
row, rather than a vector. This is because the row may contain data of different types, and a vector can
only hold elements of all the same type.

Internally, a data frame is a list of column vectors. We can use the $ syntax we saw with lists to access
columns by name.

Logical indexing

A method of indexing that we haven’t discussed yet is logical indexing. Instead of specifying the row
number or numbers that we want, we can give a logical vector which is TRUE for the rows we want and
FALSE otherwise. This can also be used with vectors and matrices.

Suppose we want to look at all the subjects over 80 years of age. We first make a logical vector:

is_over_80 <- diabetes$age >= 80

head(is_over_80)

## [1] FALSE FALSE FALSE FALSE FALSE FALSE

sum(is_over_80)

## [1] 9

>= is a comparison operator meaning greater than or equal to. We can then grab just these rows of the
data frame where is_over_80 is TRUE.

diabetes[is_over_80,]

## subject glyhb location age gender height weight frame
## 45 S2770 4.98 Buckingham 92 female 62 217 large
## 56 S2794 8.40 Buckingham 91 female 61 127 <NA>
## 90 S4803 5.71 Louisa 83 female 59 125 medium
## 130 S13500 5.60 Louisa 82 male 66 163 <NA>
## 139 S15013 4.57 Louisa 81 female 64 158 medium
## 193 S15815 4.92 Buckingham 82 female 63 170 medium
## 321 S40784 10.07 Louisa 84 female 60 192 small
## 323 S40786 6.48 Louisa 80 male 71 212 medium
## 324 S40789 11.18 Louisa 80 female 62 162 small

We might also want to know which rows our logical vector is TRUE for. This is achieved with the which
function. The result of this can also be used to index the data frame.
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which_over_80 <- which(is_over_80)
which_over_80

## [1] 45 56 90 130 139 193 321 323 324

diabetes[which_over_80,]

## subject glyhb location age gender height weight frame
## 45 S2770 4.98 Buckingham 92 female 62 217 large
## 56 S2794 8.40 Buckingham 91 female 61 127 <NA>
## 90 S4803 5.71 Louisa 83 female 59 125 medium
## 130 S13500 5.60 Louisa 82 male 66 163 <NA>
## 139 S15013 4.57 Louisa 81 female 64 158 medium
## 193 S15815 4.92 Buckingham 82 female 63 170 medium
## 321 S40784 10.07 Louisa 84 female 60 192 small
## 323 S40786 6.48 Louisa 80 male 71 212 medium
## 324 S40789 11.18 Louisa 80 female 62 162 small

Comparison operators available are:

• x == y “equal to”
• x != y “not equal to”
• x < y “less than”
• x > y “greater than”
• x <= y “less than or equal to”
• x >= y “greater than or equal to”

More complicated conditions can be constructed using logical operators:

• a & b “and”, true only if both a and b are true.
• a | b “or”, true if either a or b or both are true.
• ! a “not” , true if a is false, and false if a is true.

is_over_80_and_female <- is_over_80 & diabetes$gender == "female"

is_not_from_buckingham <- !(diabetes$location == "Buckingham")
# or
is_not_from_buckingham <- diabetes$location != "Buckingham"

The data we are working with is derived from a dataset called diabetes in the faraway package. The
rows are people interviewed as part of a study of diabetes prevalence. The column glyhb is a measurement
of percent glycosylated haemoglobin, which gives information about long term glucose levels in blood.
Values greater than 7% are usually taken as a positive diagnosis of diabetes. Let’s add this as a column.

diabetes$diabetic <- diabetes$glyhb > 7.0

head(diabetes)

## subject glyhb location age gender height weight frame diabetic
## 1 S1002 4.64 Buckingham 58 female 61 256 large FALSE
## 2 S1003 4.63 Buckingham 67 male 67 119 large FALSE
## 3 S1005 7.72 Buckingham 64 male 68 183 medium TRUE
## 4 S1008 4.81 Buckingham 34 male 71 190 large FALSE
## 5 S1011 4.84 Buckingham 30 male 69 191 medium FALSE
## 6 S1015 3.94 Buckingham 37 male 59 170 medium FALSE
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Challenge

Which female subjects from Buckingham are under the age of 25?
What is their average glyhb?
Are any of them diabetic?

Missing data

summary gives an overview of a data frame.

summary(diabetes)

## subject glyhb location age
## S10000 : 1 Min. : 2.680 Buckingham:178 Min. :19.00
## S10001 : 1 1st Qu.: 4.385 Louisa :176 1st Qu.:35.00
## S10016 : 1 Median : 4.840 Median :45.00
## S1002 : 1 Mean : 5.580 Mean :46.91
## S10020 : 1 3rd Qu.: 5.565 3rd Qu.:60.00
## S1003 : 1 Max. :16.110 Max. :92.00
## (Other):348 NA's :11
## gender height weight frame diabetic
## female:206 Min. :52.00 Min. : 99.0 large : 91 Mode :logical
## male :148 1st Qu.:63.00 1st Qu.:150.0 medium:155 FALSE:291
## Median :66.00 Median :171.0 small : 96 TRUE :52
## Mean :65.93 Mean :176.2 NA's : 12 NA's :11
## 3rd Qu.:69.00 3rd Qu.:198.0
## Max. :76.00 Max. :325.0
## NA's :5 NA's :1

We see that some columns contain NAs. NA is R’s way of indicating missing data. Missing data is important
in statistics, so R is careful with its treatment of this. If we try to calculate with an NA the result will be
NA.

1 + NA

## [1] NA

mean(diabetes$glyhb)

## [1] NA

Many summary functions, such as mean, have a flag to say ignore NA values.

mean(diabetes$glyhb, na.rm=TRUE)

## [1] 5.580292

There is also an is.na function, allowing us to perform this removal manually using logical indexing.

not_missing <- !is.na(diabetes$glyhb)
mean( diabetes$glyhb[not_missing] )

## [1] 5.580292
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Factors

When R loads a CSV file, it tries to give appropriate types to the columns. Let’s examine what types R
has given our data.

str(diabetes)

## 'data.frame': 354 obs. of 9 variables:
## $ subject : Factor w/ 354 levels "S10000","S10001",..: 4 6 7 8 9 10 11 12 13 14 ...
## $ glyhb : num 4.64 4.63 7.72 4.81 4.84 ...
## $ location: Factor w/ 2 levels "Buckingham","Louisa": 1 1 1 1 1 1 1 1 2 2 ...
## $ age : int 58 67 64 34 30 37 45 55 60 38 ...
## $ gender : Factor w/ 2 levels "female","male": 1 2 2 2 2 2 2 1 1 1 ...
## $ height : int 61 67 68 71 69 59 69 63 65 58 ...
## $ weight : int 256 119 183 190 191 170 166 202 156 195 ...
## $ frame : Factor w/ 3 levels "large","medium",..: 1 1 2 1 2 2 1 3 2 2 ...
## $ diabetic: logi FALSE FALSE TRUE FALSE FALSE FALSE ...

We might have expected the text columns to be the “character” data type, but they are instead “factor”s.

head( diabetes$frame )

## [1] large large medium large medium medium
## Levels: large medium small

R uses the factor data type to store a vector of categorical data. The different possible categories are
called “levels”.

Factors can be created from character vectors with factor. We sometimes care what order the levels
are in, since this can affect how data is plotted or tabulated by various functions. If there is some sort
of baseline level, such as “wildtype strain” or “no treatment”, it is usually given first. factor has an
argument levels= to specify the desired order of levels.

Factors can be converted back to a character vector with as.character.

When R loaded our data, it chose levels in alphabetical order. Let’s adjust that for the column
diabetes$frame.

diabetes$frame <- factor(diabetes$frame, levels=c("small","medium","large"))

head( diabetes$frame )

## [1] large large medium large medium medium
## Levels: small medium large

Plotting factors

Some functions in R do different things if you give them different types of argument. summary and plot
are examples of such functions.

If we plot factors, R shows the proportions of each level in the factor. We can also see that R uses the
order of levels we gave it in the plot.

plot( diabetes$frame )
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When we give R two factors to plot it produces a “mosaic plot” that helps us see if there is any relationship
between the two factors.

plot( diabetes$gender, diabetes$frame )

diabetes$diabetic is logical, but we can tell R to turn it into a factor to produce this type of plot for
this column as well.

plot( factor(diabetes$diabetic) )
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plot( diabetes$frame, factor(diabetes$diabetic) )

Summarizing factors

The table function gives us the actual numbers behind the graphical summaries we just plotted (a
“contingency table”).
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table(diabetes$frame)

##
## small medium large
## 96 155 91

table(diabetes$diabetic, diabetes$frame)

##
## small medium large
## FALSE 87 126 69
## TRUE 7 24 19

Fisher’s Exact Test (fisher.test) or a chi-squared test (chiseq.test) can be used to show that two
factors are not independent.

fisher.test( table(diabetes$diabetic, diabetes$frame) )

##
## Fisher's Exact Test for Count Data
##
## data: table(diabetes$diabetic, diabetes$frame)
## p-value = 0.02069
## alternative hypothesis: two.sided

Challenge - gender and diabetes

Do you think there is any association between gender and whether a person is diabetic shown
by this data set?
Why, or why not?

Summarizing data frames

We were able to summarize the dimensions (rows or columns) of a matrix with apply. In a data frame
instead of summarizing along different dimensions, we can summarize with respect to different factor
columns.

We already saw how to count different levels in a factor with table.

We can use summary functions such as mean with a function called tapply, which works similarly to
apply. The three arguments we need are very similar to the three arguments we used with apply:

1. The data to summarize.
2. What we want not to be collapsed away in the output.
3. The function to use to summarize the data.

However rather than specifying a dimension for argument 2 we specify a factor.

tapply(diabetes$glyhb, diabetes$frame, mean)

## small medium large
## NA NA NA

We obtain NAs because our data contains NAs. We need to tell mean to ignore these. Additional
arguments to tapply are passed to the function given, here mean, so we can tell mean to ignore NA with
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tapply(diabetes$glyhb, diabetes$frame, mean, na.rm=TRUE)

## small medium large
## 4.971064 5.721333 6.035795

The result is a vector, with names from the classifying factor. These means of a continuous measurement
seem to be bearing out our earlier observation using a discrete form of the measurement, that this data
show some link between body frame and diabetes prevalence.

We can summarize over several factors, in which case they must be given as a list. Two factors produces
a matrix. More factors would produce a higher dimensional array.

tapply(diabetes$glyhb, list(diabetes$frame, diabetes$gender), mean, na.rm=TRUE)

## female male
## small 5.042308 4.811379
## medium 5.490106 6.109464
## large 6.196286 5.929811

This is similar to a “pivot table”, which you may have used in a spreadsheet.

Challenge

Find the age of the youngest and oldest subject, for each gender and in each location in the
study.
Extension: How could we clean up the data frame so we never needed to use na.rm=TRUE
when summarizing glyhb values?

Melting a matrix into a data frame

You may be starting to see that the idea of a matrix and the idea of a data frame with some factor columns
are interchangeable. Depending on what we are doing, we may shift between these two representations of
the same data.

Modern R usage emphasizes use of data frames over matrices, as data frames are the more flexible
representation. Everything we can represent with a matrix we can represent with a data frame, but not
vice versa.

tapply took us from a data frame to a matrix. We can go the other way, from a matrix to a data frame,
with the melt function in the package reshape2.

library(reshape2)

averages <- tapply(diabetes$glyhb, list(diabetes$frame, diabetes$gender), mean, na.rm=TRUE)
melt(averages)

## Var1 Var2 value
## 1 small female 5.042308
## 2 medium female 5.490106
## 3 large female 6.196286
## 4 small male 4.811379
## 5 medium male 6.109464
## 6 large male 5.929811

counts <- table(diabetes$frame, diabetes$gender)
melt(counts)
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## Var1 Var2 value
## 1 small female 66
## 2 medium female 96
## 3 large female 37
## 4 small male 30
## 5 medium male 59
## 6 large male 54

Tip

The aggregate function effectively combines these two steps for you. See also the ddply
function in package plyr, and the dplyr package. There are many variations on the basic
idea behind apply!

Merging two data frames

One often wishes to merge data from two different sources. We want a new data frame with columns
from both of the input data frames. This is also called a join operation.
Information about cholesterol levels for our diabetes study has been collected, and we have it in a second
CSV file.

cholesterol <- read.csv("data/intro-r/chol.csv")
head(cholesterol)

## subject chol
## 1 S1000 203
## 2 S1001 165
## 3 S1002 228
## 4 S1005 249
## 5 S1008 248
## 6 S1011 195

Great! We’ll just add this new column of data to our data frame.

diabetes2 <- diabetes
diabetes2$chol <- cholesterol$chol

## Error in `$<-.data.frame`(`*tmp*`, "chol", value = c(203L, 165L, 228L, : replacement has 362 rows, data has 354

Oh. The two data frames don’t have exactly the same set of subjects. We should also have checked if
they were even in the same order before blithely combining them. R has shown an error this time, but
there are ways to mess up like this that would not show an error. How embarassing.

nrow(diabetes)

## [1] 354

nrow(cholesterol)

## [1] 362

length( intersect(diabetes$subject, cholesterol$subject) )

## [1] 320
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Inner join using the merge function

We will have to do the best we can with the subjects that are present in both data frames (an “inner
join”). The merge function lets us merge the data frames.

diabetes2 <- merge(diabetes, cholesterol, by="subject")

nrow(diabetes2)

## [1] 320

head(diabetes2)

## subject glyhb location age gender height weight frame diabetic chol
## 1 S10001 4.01 Buckingham 21 female 65 169 large FALSE 132
## 2 S10016 6.39 Buckingham 71 female 63 244 large FALSE 228
## 3 S1002 4.64 Buckingham 58 female 61 256 large FALSE 228
## 4 S10020 7.53 Buckingham 64 male 71 225 large TRUE 181
## 5 S1005 7.72 Buckingham 64 male 68 183 medium TRUE 249
## 6 S1008 4.81 Buckingham 34 male 71 190 large FALSE 248

plot(diabetes2$chol, diabetes2$glyhb)

Note that the result is in a different order to the input. However it contains the correct rows.

Left join using the merge function

merge has various optional arguments that let us tweak how it operates. For example if we wanted to
retain all rows from our first data frame we could specify all.x=TRUE. This is a “left join”.
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diabetes3 <- merge(diabetes, cholesterol, by="subject", all.x=TRUE)

nrow(diabetes3)

## [1] 354

head(diabetes3)

## subject glyhb location age gender height weight frame diabetic chol
## 1 S10000 4.83 Buckingham 23 male 76 164 small FALSE NA
## 2 S10001 4.01 Buckingham 21 female 65 169 large FALSE 132
## 3 S10016 6.39 Buckingham 71 female 63 244 large FALSE 228
## 4 S1002 4.64 Buckingham 58 female 61 256 large FALSE 228
## 5 S10020 7.53 Buckingham 64 male 71 225 large TRUE 181
## 6 S1003 4.63 Buckingham 67 male 67 119 large FALSE NA

The data missing from the second data frame is indicated by NAs.

Tip

Besides merge, there are various ways to join two data frames in R.

• In the simplest case, if the data frames are the same length and in the same order, cbind
(“column bind”) can be used to put them next to each other in one larger data frame.

• The match function can be used to determine how a second data frame needs to be
shuffled in order to match the first one. Its result can be used as a row index for the
second data frame.

• The dplyr package offers various join functions: left_join, inner_join, outer_join,
etc. One advantage of these functions is that they preserve the order of the first data
frame.
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Chapter 4

For loops

We are not covering much about the programming side of R today. However for loops are useful even for
interactive work.
If you intend to take your knowledge of R further, you should also investigate writing your own functions,
and if statements.
For loops are the way we tell a computer to perform a repetitive task. Under the hood, many of the
functions we have been using today use for loops.
If we can’t find a ready made function to do what we want, we may need to write our own for loop.

Preliminary: blocks of code

Suppose we want to print each word in a sentence, and for some reason we want to do this all at once.
One way is to use six calls to print:

sentence <- c("Let", "the", "computer", "do", "the", "work")

{
print(sentence[1])
print(sentence[2])
print(sentence[3])
print(sentence[4])
print(sentence[5])
print(sentence[6])

}

## [1] "Let"
## [1] "the"
## [1] "computer"
## [1] "do"
## [1] "the"
## [1] "work"

R treats the code between the { and the } as a single “block”. It reads it in as a single unit, and then
executes each line in turn with no further interaction.

For loops

What we did above was quite repetitive. It’s always better when the computer does repetitive work for us.
Here’s a better approach, using a for loop:
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for (word in sentence) {
print(word)

}

## [1] "Let"
## [1] "the"
## [1] "computer"
## [1] "do"
## [1] "the"
## [1] "work"

The general form of a loop is:

for (variable in collection) {
do things with variable

}

We can name the loop variable anything we like (with a few restrictions, e.g. the name of the variable
cannot start with a digit). in is part of the for syntax. Note that the body of the loop is enclosed in
curly braces { }. For a single-line loop body, as here, the braces aren’t needed, but it is good practice to
include them as we did.

Accumulating a result

Here’s another loop that repeatedly updates a variable:

len <- 0
vowels <- c("a", "e", "i", "o", "u")
for (v in vowels) {

len <- len + 1
}
# Number of vowels
len

## [1] 5

It’s worth tracing the execution of this little program step by step. Since there are five elements in the
vector vowels, the statement inside the loop will be executed five times. The first time around, len is
zero (the value assigned to it on line 1) and v is "a". The statement adds 1 to the old value of len,
producing 1, and updates len to refer to that new value. The next time around, v is "e" and len is 1,
so len is updated to be 2. After three more updates, len is 5; since there is nothing left in the vector
vowels for R to process, the loop finishes.
Note that a loop variable is just a variable that’s being used to record progress in a loop. It still exists
after the loop is over, and we can re-use variables previously defined as loop variables as well:

letter <- "z"
for (letter in c("a", "b", "c")) {

print(letter)
}

## [1] "a"
## [1] "b"
## [1] "c"

# after the loop, letter is
letter

## [1] "c"
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Challenge - Using loops

1. Recall that we can use : to create a sequence of numbers.

1:5

## [1] 1 2 3 4 5

Suppose the variable n has been set with some value, and we want to print out the numbers
up to that value, one per line.
Write a for loop to achieve this.

2. Suppose we have a vector called vec and we want to find the total of all the numbers in
vec.

Write a for loop to calculate this total.
(R has a built-in function called sum that does this for you. Please don’t use it for this
exercise.)

3. Exponentiation is built into R:

2^4

## [1] 16

Suppose variables base and power have been set.
Write a for loop to raise base to the power power.
Try it with various different values in base and power.

Many of the functions and operators we have been using are implemented using for loops, so often in R
we are able to use these rather than directly writing a for loop. However when we need to do something
complicated, for loops are there for us. Some real world reasons you might use a for loop:

• To create a collection of similar plots.

• To load and process a collection of files, all in the same way.

• To perform a Monte Carlo simulation to estimate the power of a proposed experiment, for a given
effect size and expected noise due to measurement error and biological variation.

• To perform resampling such as a permutation test or a bootstrap, to assure yourself that some
result you have calculated is not simply due to chance.
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Chapter 5

Plotting with ggplot2

We already saw some of R’s built in plotting facilities with the function plot. A more recent and much
more powerful plotting library is ggplot2. This implements ideas from a book called “The Grammar of
Graphics”. The syntax is a little strange, but there are plenty of examples in the online documentation1.

If ggplot2 isn’t already installed, we need to install it.

install.packages("ggplot2")

We then need to load it.

library(ggplot2)

## Loading required package: methods

Producing a plot with ggplot2, we must give three things:

1. A data frame containing our data.
2. How the columns of the data frame can be translated into positions, colors, sizes, and shapes of

graphical elements (“aesthetics”).
3. The actual graphical elements to display (“geometric objects”).

Using ggplot2 with a data frame

Let’s load up our diabetes data frame again.

diabetes <- read.csv("data/intro-r/diabetes.csv")

ggplot(diabetes, aes(y=glyhb, x=age)) +
geom_point()

## Warning: Removed 11 rows containing missing values (geom_point).
1http://docs.ggplot2.org/current/
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The call to ggplot sets up the basics of how we are going to represent the various columns of the data
frame. We then literally add layers of graphics to this.
Further aesthetics can be added. Hans Rosling would be excited!

ggplot(diabetes, aes(y=glyhb, x=age, size=weight, color=frame)) +
geom_point()

## Warning: Removed 12 rows containing missing values (geom_point).
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We can see some trend for glyhb to increase with age, and we tend to see medium and large framed
people at higher levels of glyhb.

“stat” components can be added that overlay a graphical summary of the data. For example “stat_smooth”
overlays a curve fitted to the data. If there is a grouping of the data, for example by color, then separate
curves are shown for each group.

bad_rows <-
is.na(diabetes$frame) |
is.na(diabetes$height) |
is.na(diabetes$weight)

ggplot(diabetes[!bad_rows,], aes(y=weight, x=height, color=frame)) +
geom_point() + stat_smooth(method="lm")

Using ggplot2 with a matrix

Let’s return to our first matrix example.

dat <- read.csv(file="data/intro-r/pvc.csv", row.names=1)
mat <- as.matrix(dat)

ggplot only works with data frames, so we need to convert this matrix into data frame form, with one
measurement in each row. We can convert to this “long” form with the melt function in the library
reshape2.

library(reshape2)
long <- melt(mat)
head(long)
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## Var1 Var2 value
## 1 Resin1 Alice 36.25
## 2 Resin2 Alice 35.15
## 3 Resin3 Alice 30.70
## 4 Resin4 Alice 29.70
## 5 Resin5 Alice 31.85
## 6 Resin6 Alice 30.20

colnames(long) <- c("resin","operator","value")
head(long)

## resin operator value
## 1 Resin1 Alice 36.25
## 2 Resin2 Alice 35.15
## 3 Resin3 Alice 30.70
## 4 Resin4 Alice 29.70
## 5 Resin5 Alice 31.85
## 6 Resin6 Alice 30.20

ggplot(long, aes(x=operator, y=value)) + geom_point()

Notice how ggplot2 is able to use either numerical or categorical (factor) data as x and y coordinates.

ggplot(long, aes(x=operator, y=value)) + geom_boxplot() + geom_point()
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ggplot(long, aes(x=operator, y=value, group=resin, color=resin)) +
geom_line() + theme_bw()

Faceting lets us quickly produce a collection of small plots.

ggplot(long, aes(x=operator, y=value)) +
facet_wrap(~ resin) + geom_point() + theme_bw()
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Saving ggplots

ggplots can be saved as we talked about earlier, but with one small twist to keep in mind. The act of
plotting a ggplot is actually triggered when it is printed. In an interactive session we are automatically
printing each value we calculate, but if you are using a for loop, or other R programming constructs, you
might need to explcitly print( ) the plot.

# Plot created but not shown.
p <- ggplot(long, aes(x=operator, y=value)) + geom_point()

# Only when we try to look at the value p is it shown
p

# Alternatively, we can explicitly print it
print(p)

# To save to a file
png("test.png")
print(p)
dev.off()

See also the function ggsave.
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Chapter 6

Next steps

We have barely touched the surface of what R has to offer today. If you want to take your skills to the
next level, here are some topics to investigate:

Programming

• Writing functions.
• Using if statements.

The Software Carpentry in R1 course introduces R as a programming language.

Tidying and summarizing data

• plyr2, dplyr3, and tidyr4 packages by Hadley Wickham.
• magrittr5’s %>% operator for chaining together data frame manipulations.

These tools play well with ggplot2, which we saw in the previous chapter.

Statistics

• Many statistical tests are built in to R.

• Linear models, and the linear model formula syntax ~, are core to much of what R has to offer
statistically.

– Many statistical techniques take linear models as their starting point, including limma which
we will be using to test for differential gene expression.

– Many R function repurpose the ~ formula syntax for other ways of relating response and
explanatory variables.

See “The R Book” by Michael J. Crawley for general reference.

The books “Linear Models with R” and “Extending the Linear Model with R” by Julian J. Faraway cover
linear models, with many practical examples.

1http://swcarpentry.github.io/r-novice-inflammation/
2http://plyr.had.co.nz/
3https://cran.rstudio.com/web/packages/dplyr/vignettes/introduction.html
4http://blog.rstudio.org/2014/07/22/introducing-tidyr/
5https://cran.r-project.org/web/packages/magrittr/vignettes/magrittr.html
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Bioinformatics

Bioconductor6 is a collection of bioinformatics related packages, including the popular limma and edgeR
packages for RNA-Seq analysis developed at the Walter and Eliza Hall Institute.

Getting help

Talk to the Monash Bioinformatics Platform for help and pointers.

Stackoverflow-style sites are also great for getting help:

• support.bioconductor.org7 for bioconductor related questions.
• biostars.org8 for general bioinformatics questions.
• stats.stackexchange.com9 for statistics questions.
• stackoverflow.com10 for general programming questions.

6http://bioconductor.org
7https://support.bioconductor.org
8https://biostars.org
9http://stats.stackexchange.com

10http://stackoverflow.com
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