
Contents

Introduction to R 3

1 Starting out in R 5
1.1 Variables . 6
1.2 Saving code in an R script . 7
1.3 Vectors . 8
1.4 Types of vector . 9
1.5 Indexing vectors . 9
1.6 Sequences . 10
1.7 Functions . 11

2 Data frames 13
2.1 Setting up . 13
2.2 Loading data . 14
2.3 Exploring . 16
2.4 Indexing data frames . 17
2.5 Columns are vectors . 18
2.6 Logical indexing . 19
2.7 Factors . 22
2.8 Readability vs tidyness . 24
2.9 Sorting . 24
2.10 Joining data frames . 25
2.11 Further reading . 27

3 Plotting with ggplot2 28
3.1 Elements of a ggplot . 28
3.2 Further geoms . 30
3.3 Highlighting subsets . 32
3.4 Fine-tuning a plot . 33
3.5 Faceting . 34
3.6 Saving ggplots . 35

4 Proteomics Data Viz 36
4.1 Visualizing Proteomics data with ggplot2 36
4.2 Exploring the data . 37
4.3 Plotting interactions types . 39
4.4 Individual Proteins . 41
4.5 Volcano Plot [Optional] . 42

1

CONTENTS

5 Summarizing data 45
5.1 Summary functions . 45
5.2 Missing values . 46
5.3 Grouped summaries . 47
5.4 t-test . 49

6 R Markdown 53
6.1 Introduction to markdown . 53
6.2 Document types . 54
6.3 Vanilla Markdown . 55

7 Header1 57
7.1 Header2 . 57
7.2 Code Chunks . 60
7.3 YAML header . 66
7.4 Alternate Formats . 67
7.5 More Resources . 68

8 Next steps 72
8.1 Deepen your understanding . 72
8.2 Expand your vocabulary . 73
8.3 Join the community . 73

2

Introduction to R

These are course notes for the “Introduction to R” course given by the Monash
Bioinformatics Platform1 for the Proteomics Pre-Lorne workshop. Our teaching
style is based on the style of The Carpentries2. This course is focussing on the
modern Tidyverse3 set of packages. We believe this is currently the quickest
route to being productive in R.

• PDF version for printing4

• ZIP of data files used in this workshop5

During the workshop we will be using the RStudio Cloud to use R over the web:

• RStudio Cloud6

You can also install R on your own computer. There are two things to download
and install:

• Download R7

• Download RStudio8

R is the language itself. RStudio provides a convenient environment in which to
use R, either on your local computer or on a server.

Source code

This book was created in R using the rmarkdown and bookdown packages!
1https://www.monash.edu/researchinfrastructure/bioinformatics
2https://carpentries.org/
3https://www.tidyverse.org/
4https://monashbioinformaticsplatform.github.io/Proteomics-Intro-R-Workshop-2020/r-

intro.pdf
5https://monashbioinformaticsplatform.github.io/Proteomics-Intro-R-Workshop-2020/r-

intro-files.zip
6https://rstudio.cloud/
7https://cran.rstudio.com/
8https://www.rstudio.com/products/rstudio/download/

3

https://www.monash.edu/researchinfrastructure/bioinformatics
https://carpentries.org/
https://www.tidyverse.org/
https://monashbioinformaticsplatform.github.io/Proteomics-Intro-R-Workshop-2020/r-intro.pdf
https://monashbioinformaticsplatform.github.io/Proteomics-Intro-R-Workshop-2020/r-intro.pdf
https://monashbioinformaticsplatform.github.io/Proteomics-Intro-R-Workshop-2020/r-intro-files.zip
https://monashbioinformaticsplatform.github.io/Proteomics-Intro-R-Workshop-2020/r-intro-files.zip
https://rstudio.cloud/
https://cran.rstudio.com/
https://www.rstudio.com/products/rstudio/download/

CONTENTS

• GitHub page9

Authors and copyright

This course is developed for the Monash Bioinformatics Platform by Paul Harri-
son, Anup Shah & Adele Barugahare.

This work is licensed under a CC BY-4: Creative Commons Attribution 4.0
International License10. The attribution is “Monash Bioinformatics Platform” if
copying or modifying these notes.

Data files are derived from Gapminder, which has a CC BY-4 license. The
attribution is “Free data from www.gapminder.org”. The data is given here in
a form designed to teach various points about the R language. Refer to the
Gapminder site11 for the original form of the data if using it for other uses.

9https://github.com/MonashBioinformaticsPlatform/Proteomics-Intro-R-Workshop-
2020/

10http://creativecommons.org/licenses/by/4.0/
11https://www.gapminder.org

4

https://github.com/MonashBioinformaticsPlatform/Proteomics-Intro-R-Workshop-2020/
https://github.com/MonashBioinformaticsPlatform/Proteomics-Intro-R-Workshop-2020/
http://creativecommons.org/licenses/by/4.0/
https://www.gapminder.org

Chapter 1

Starting out in R

R is both a programming language and an interactive environment for data
exploration and statistics. Today we will be concentrating on R as an interactive
environment.

Working with R is primarily text-based. The basic mode of use for R is that
the user types in a command in the R language and presses enter, and then R
computes and displays the result.

We will be working in RStudio1. The easiest way to get started is to go to
RStudio Cloud2 and create a new project. Monash staff and students can log in
using their Monash Google account.

The main way of working with R is the console, where you enter commands and
view results. RStudio surrounds this with various conveniences. In addition to
the console panel, RStudio provides panels containing:

• A text editor, where R commands can be recorded for future reference.
• A history of commands that have been typed on the console.
• An “environment” pane with a list of variables, which contain values that

R has been told to save from previous commands.
• A file manager.
• Help on the functions available in R.
• A panel to show plots.
1https://www.rstudio.com/products/rstudio/download/
2https://rstudio.cloud/

5

https://www.rstudio.com/products/rstudio/download/
https://rstudio.cloud/

CHAPTER 1. STARTING OUT IN R

Open RStudio, click on the “Console” pane, type 1+1 and press enter. R displays
the result of the calculation. In this document, we will show such an interaction
with R as below.
1+1

[1] 2

+ is called an operator. R has the operators you would expect for for basic
mathematics: + - * / ˆ. It also has operators that do more obscure things.

* has higher precedence than +. We can use brackets if necessary (). Try
1+2*3 and (1+2)*3.

Spaces can be used to make code easier to read.

We can compare with == < > <= >=. This produces a logical value, TRUE or
FALSE. Note the double equals, ==, for equality comparison.
2 * 2 == 4

[1] TRUE

There are also character strings such as "string". A character string must be
surrounded by either single or double quotes.

1.1 Variables

A variable is a name for a value. We can create a new variable by assigning a
value to it using <-.
width <- 5

RStudio helpfully shows us the variable in the “Environment” pane. We can
also print it by typing the name of the variable and hitting enter. In general, R

6

CHAPTER 1. STARTING OUT IN R

will print to the console any object returned by a function or operation unless
we assign it to a variable.
width

[1] 5

Examples of valid variables names: hello, subject_id, subject.ID, x42.
Spaces aren’t ok inside variable names. Dots (.) are ok in R, unlike in many
other languages. Numbers are ok, except as the first character. Punctuation is
not allowed, with two exceptions: _ and ..

We can do arithmetic with the variable:
Area of a square
width * width

[1] 25

and even save the result in another variable:
Save area in "area" variable
area <- width * width

We can also change a variable’s value by assigning it a new value:
width <- 10
width

[1] 10
area

[1] 25

Notice that the value of area we calculated earlier hasn’t been updated. Assign-
ing a new value to one variable does not change the values of other variables.
This is different to a spreadsheet, but usual for programming languages.

1.2 Saving code in an R script

Once we’ve created a few variables, it becomes important to record how they
were calculated so we can reproduce them later.

The usual workflow is to save your code in an R script (“.R file”). Go to “File/New
File/R Script” to create a new R script. Code in your R script can be sent to
the console by selecting it or placing the cursor on the correct line, and then
pressing Control-Enter (Command-Enter on a Mac).

Tip

Add comments to code, using lines starting with the # character. This makes it
easier for others to follow what the code is doing (and also for us the next time
we come back to it).

7

CHAPTER 1. STARTING OUT IN R

Challenge: using variables

1. Re-write this calculation so that it doesn’t use variables:
a <- 4*20
b <- 7
a+b

2. Re-write this calcuation over multiple lines, using a variable:
2*2+2*2+2*2

1.3 Vectors

A vector of numbers is a collection of numbers. “Vector” means different things
in different fields (mathematics, geometry, biology), but in R it is a fancy name
for a collection of numbers. We call the individual numbers elements of the
vector.

We can make vectors with c(), for example c(1,2,3). c means “combine”. R
is obsesssed with vectors, in R even single numbers are vectors of length one.
Many things that can be done with a single number can also be done with a
vector. For example arithmetic can be done on vectors as it can be on single
numbers.
myvec <- c(10,20,30,40,50)
myvec

[1] 10 20 30 40 50
myvec + 1

[1] 11 21 31 41 51
myvec + myvec

[1] 20 40 60 80 100
length(myvec)

[1] 5
c(60, myvec)

[1] 60 10 20 30 40 50
c(myvec, myvec)

[1] 10 20 30 40 50 10 20 30 40 50

When we talk about the length of a vector, we are talking about the number of
numbers in the vector.

8

CHAPTER 1. STARTING OUT IN R

1.4 Types of vector

We will also encounter vectors of character strings, for example "hello" or
c("hello","world"). Also we will encounter “logical” vectors, which contain
TRUE and FALSE values. R also has “factors”, which are categorical vectors, and
behave much like character vectors (think the factors in an experiment).

Challenge: mixing types

Sometimes the best way to understand R is to try some examples and see what
it does.

What happens when you try to make a vector containing different types, using
c()? Make a vector with some numbers, and some words (eg. character strings
like "test", or "hello").

Why does the output show the numbers surrounded by quotes " " like character
strings are?

Because vectors can only contain one type of thing, R chooses a lowest common
denominator type of vector, a type that can contain everything we are trying to
put in it. A different language might stop with an error, but R tries to soldier
on as best it can. A number can be represented as a character string, but a
character string can not be represented as a number, so when we try to put both
in the same vector R converts everything to a character string.

1.5 Indexing vectors

Access elements of a vector with [], for example myvec[1] to get the first
element. You can also assign to a specific element of a vector.
myvec[1]

[1] 10
myvec[2]

[1] 20
myvec[2] <- 5
myvec

[1] 10 5 30 40 50

Can we use a vector to index another vector? Yes!
myind <- c(4,3,2)
myvec[myind]

9

CHAPTER 1. STARTING OUT IN R

[1] 40 30 5

We could equivalently have written:
myvec[c(4,3,2)]

[1] 40 30 5

Challenge: indexing

We can create and index character vectors as well. A cafe is using R to create
their menu.
items <- c("spam", "eggs", "beans", "bacon", "sausage")

1. What does items[-3] produce? Based on what you find, use indexing to
create a version of items without "spam".

2. Use indexing to create a vector containing spam, eggs, sausage, spam, and
spam.

3. Add a new item, “lobster”, to items.

1.6 Sequences

Another way to create a vector is with ::
1:10

[1] 1 2 3 4 5 6 7 8 9 10

This can be useful when combined with indexing:
items[1:4]

[1] "spam" "eggs" "beans" "bacon"

Sequences are useful for other things, such as a starting point for calculations:
x <- 1:10
x*x

[1] 1 4 9 16 25 36 49 64 81 100
plot(x, x*x)

10

CHAPTER 1. STARTING OUT IN R

2 4 6 8 10

0
20

60
10

0

x

x
*

x

1.7 Functions

Functions are the things that do all the work for us in R: calculate, manipulate
data, read and write to files, produce plots. R has many built in functions and
we will also be loading more specialized functions from “packages”.

We’ve already seen several functions: c(), length(), and plot(). Let’s now
have a look at sum().
sum(myvec)

[1] 135

We called the function sum with the argument myvec, and it returned the value
135. We can get help on how to use sum with:

?sum

Some functions take more than one argument. Let’s look at the function rep,
which means “repeat”, and which can take a variety of different arguments. In
the simplest case, it takes a value and the number of times to repeat that value.
rep(42, 10)

[1] 42 42 42 42 42 42 42 42 42 42

As with many functions in R—which is obsessed with vectors—the thing to be
repeated can be a vector with multiple elements.
rep(c(1,2,3), 10)

[1] 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

So far we have used positional arguments, where R determines which argument
is which by the order in which they are given. We can also give arguments by
name. For example, the above is equivalent to
rep(c(1,2,3), times=10)

[1] 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

11

CHAPTER 1. STARTING OUT IN R

rep(x=c(1,2,3), 10)

[1] 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
rep(times=10, x=c(1,2,3))

[1] 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

Arguments can have default values, and a function may have many different
possible arguments that make it do obscure things. For example, rep can also
take an argument each=. It’s typical for a function to be invoked with some
number of positional arguments, which are always given, plus some less commonly
used arguments, typically given by name.
rep(c(1,2,3), each=3)

[1] 1 1 1 2 2 2 3 3 3
rep(c(1,2,3), each=3, times=5)

[1] 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3 1 1
[39] 1 2 2 2 3 3 3

Challenge: using functions

1. Use sum to sum from 1 to 10,000.

2. Look at the documentation for the seq function. What does seq do? Give
an example of using seq with either the by or length.out argument.

12

Chapter 2

Data frames

Data frame is R’s name for tabular data. We generally want each row in a data
frame to represent a unit of observation, and each column to contain a different
type of information about the units of observation. Tabular data in this form is
called “tidy data”1.

Today we will be using a collection of modern packages collectively known as
the Tidyverse2. R and its predecessor S have a history dating back to 1976. The
Tidyverse fixes some dubious design decisions baked into “base R”, including
having its own slightly improved form of data frame, which is called a tibble.
Sticking to the Tidyverse where possible is generally safer, Tidyverse packages
are more willing to generate errors rather than ignore problems.

2.1 Setting up

Our first step is to download the files we need and to install the Tidyverse. This
is the one step where we ask you to copy and paste some code:
Download files for this workshop
download.file(
"https://monashbioinformaticsplatform.github.io/Proteomics-Intro-R-Workshop-2020/r-intro-files.zip",
destfile="r-intro-files.zip")

unzip("r-intro-files.zip")

Install Tidyverse
install.packages("tidyverse")

If using RStudio Cloud, you might need to switch to R version 3.5.3 to successfully
install Tidyverse. Use the drop-down in the top right corner of the page.

People also sometimes have problems installing all the packages in Tidyverse
on Windows machines. If you run into problems you may have more success

1http://vita.had.co.nz/papers/tidy-data.html
2https://www.tidyverse.org/

13

http://vita.had.co.nz/papers/tidy-data.html
https://www.tidyverse.org/

CHAPTER 2. DATA FRAMES

installing individual packages.
install.packages(c("dplyr","readr","tidyr","ggplot2"))

We need to load the tidyverse package in order to use it.
library(tidyverse)

OR
library(dplyr)
library(readr)
library(tidyr)
library(ggplot2)

The tidyverse package loads various other packages, setting up a modern R
environment. In this section we will be using functions from the dplyr, readr
and tidyr packages.

R is a language with mini-languages within it that solve specific problem domains.
dplyr is such a mini-language, a set of “verbs” (functions) that work well together.
dplyr, with the help of tidyr for some more complex operations, provides a
way to perform most manipulations on a data frame that you might need.

2.2 Loading data

We will use the read_csv function from readr to load a data set. (See also
read.csv in base R.) CSV stands for Comma Separated Values, and is a text
format used to store tabular data. The first few lines of the file we are loading
are shown below. Conventionally the first line contains column headings.

name,region,oecd,g77,lat,long,income2017
Afghanistan,asia,FALSE,TRUE,33,66,low
Albania,europe,FALSE,FALSE,41,20,upper_mid
Algeria,africa,FALSE,TRUE,28,3,upper_mid
Andorra,europe,FALSE,FALSE,42.50779,1.52109,high
Angola,africa,FALSE,TRUE,-12.5,18.5,lower_mid
geo <- read_csv("r-intro-files/geo.csv")

Parsed with column specification:
cols(
name = col_character(),
region = col_character(),
oecd = col_logical(),
g77 = col_logical(),
lat = col_double(),
long = col_double(),
income2017 = col_character()
)
geo

14

CHAPTER 2. DATA FRAMES

A tibble: 196 x 7
name region oecd g77 lat long income2017
<chr> <chr> <lgl> <lgl> <dbl> <dbl> <chr>
1 Afghanistan asia FALSE TRUE 33 66 low
2 Albania europe FALSE FALSE 41 20 upper_mid
3 Algeria africa FALSE TRUE 28 3 upper_mid
4 Andorra europe FALSE FALSE 42.5 1.52 high
5 Angola africa FALSE TRUE -12.5 18.5 lower_mid
6 Antigua and Barbuda americas FALSE TRUE 17.0 -61.8 high
7 Argentina americas FALSE TRUE -34 -64 upper_mid
8 Armenia europe FALSE FALSE 40.2 45 lower_mid
9 Australia asia TRUE FALSE -25 135 high
10 Austria europe TRUE FALSE 47.3 13.3 high
... with 186 more rows

read_csv has guessed the type of data each column holds:

• <chr> - character strings
• <dbl> - numerical values. Technically these are “doubles”, which is a way

of storing numbers with 15 digits precision.
• <lgl> - logical values, TRUE or FALSE.

We will also encounter:

• <int> - integers, a fancy name for whole numbers.
• <fct> - factors, categorical data. We will get to this shortly.

You can also see this data frame referring to itself as “a tibble”. This is the
Tidyverse’s improved form of data frame. Tibbles present themselves more
conveniently than base R data frames. Base R data frames don’t show the type
of each column, and output every row when you try to view them.

Tip

A data frame can also be created from vectors, with the tibble function. (See
also data.frame in base R.) For example:
tibble(foo=c(10,20,30), bar=c("a","b","c"))

A tibble: 3 x 2
foo bar
<dbl> <chr>
1 10 a
2 20 b
3 30 c

The argument names become column names in the data frame.

Tip

The path to the file on our server is "r-intro-files/geo.csv". This says,
starting from your working directory, look in the directory r-intro-files for

15

CHAPTER 2. DATA FRAMES

the file geo.csv. The steps in the path are separated by /. Your working
directory is shown at the top of the console pane. The path needed might be
different on your own computer, depending where you downloaded the file.

One way to work out the correct path is to find the file in the file browser pane,
click on it and select “Import Dataset. . . ”.

2.3 Exploring

The View function gives us a spreadsheet-like view of the data frame.

View(geo)

print with the n argument can be used to show more than the first 10 rows on
the console.
print(geo, n=200)

We can extract details of the data frame with further functions:
nrow(geo)

[1] 196
ncol(geo)

[1] 7
colnames(geo)

[1] "name" "region" "oecd" "g77" "lat"
[6] "long" "income2017"
summary(geo)

name region oecd g77
Length:196 Length:196 Mode :logical Mode :logical
Class :character Class :character FALSE:165 FALSE:65
Mode :character Mode :character TRUE :31 TRUE :131
##
##
##
lat long income2017

16

CHAPTER 2. DATA FRAMES

Min. :-42.00 Min. :-175.000 Length:196
1st Qu.: 4.00 1st Qu.: -5.625 Class :character
Median : 17.42 Median : 21.875 Mode :character
Mean : 19.03 Mean : 23.004
3rd Qu.: 39.82 3rd Qu.: 51.892
Max. : 65.00 Max. : 179.145

2.4 Indexing data frames

Data frames can be subset using [row,column] syntax.
geo[4,2]

A tibble: 1 x 1
region
<chr>
1 europe

Note that while this is a single value, it is still wrapped in a data frame. (This
is a behaviour specific to Tidyverse data frames.) More on this in a moment.

Columns can be given by name.
geo[4,"region"]

A tibble: 1 x 1
region
<chr>
1 europe

The column or row may be omitted, thereby retrieving the entire row or column.
geo[4,]

A tibble: 1 x 7
name region oecd g77 lat long income2017
<chr> <chr> <lgl> <lgl> <dbl> <dbl> <chr>
1 Andorra europe FALSE FALSE 42.5 1.52 high
geo[,"region"]

A tibble: 196 x 1
region
<chr>
1 asia
2 europe
3 africa
4 europe
5 africa
6 americas
7 americas
8 europe

17

CHAPTER 2. DATA FRAMES

9 asia
10 europe
... with 186 more rows

Multiple rows or columns may be retrieved using a vector.
rows_wanted <- c(1,3,5)
geo[rows_wanted,]

A tibble: 3 x 7
name region oecd g77 lat long income2017
<chr> <chr> <lgl> <lgl> <dbl> <dbl> <chr>
1 Afghanistan asia FALSE TRUE 33 66 low
2 Algeria africa FALSE TRUE 28 3 upper_mid
3 Angola africa FALSE TRUE -12.5 18.5 lower_mid

Vector indexing can also be written on a single line.
geo[c(1,3,5),]

A tibble: 3 x 7
name region oecd g77 lat long income2017
<chr> <chr> <lgl> <lgl> <dbl> <dbl> <chr>
1 Afghanistan asia FALSE TRUE 33 66 low
2 Algeria africa FALSE TRUE 28 3 upper_mid
3 Angola africa FALSE TRUE -12.5 18.5 lower_mid
geo[1:7,]

A tibble: 7 x 7
name region oecd g77 lat long income2017
<chr> <chr> <lgl> <lgl> <dbl> <dbl> <chr>
1 Afghanistan asia FALSE TRUE 33 66 low
2 Albania europe FALSE FALSE 41 20 upper_mid
3 Algeria africa FALSE TRUE 28 3 upper_mid
4 Andorra europe FALSE FALSE 42.5 1.52 high
5 Angola africa FALSE TRUE -12.5 18.5 lower_mid
6 Antigua and Barbuda americas FALSE TRUE 17.0 -61.8 high
7 Argentina americas FALSE TRUE -34 -64 upper_mid

2.5 Columns are vectors

Ok, so how do we actually get data out of a data frame?

Under the hood, a data frame is a list of column vectors. We can use $ to
retrieve columns. Occasionally it is also useful to use [[]] to retrieve columns,
for example if the column name we want is stored in a variable.
head(geo$region)

[1] "asia" "europe" "africa" "europe" "africa" "americas"

18

CHAPTER 2. DATA FRAMES

head(geo[["region"]])

[1] "asia" "europe" "africa" "europe" "africa" "americas"

To get the “region” value of the 4th row as above, but unwrapped, we can use:
geo$region[4]

[1] "europe"

For example, to plot the longitudes and latitudes we could use:
plot(geo$long, geo$lat)

−150 −100 −50 0 50 100 150

−
40

0
20

60

geo$long

ge
o$

la
t

2.6 Logical indexing

A method of indexing that we haven’t discussed yet is logical indexing. Instead
of specifying the row number or numbers that we want, we can give a logical
vector which is TRUE for the rows we want and FALSE otherwise. This can also
be used with vectors.

We will first do this in a slightly verbose way in order to understand it, then
learn a more concise way to do this using the dplyr package.

Southern countries have latitude less than zero.
is_southern <- geo$lat < 0

head(is_southern)

[1] FALSE FALSE FALSE FALSE TRUE FALSE
sum(is_southern)

[1] 40

sum treats TRUE as 1 and FALSE as 0, so it tells us the number of TRUE
elements in the vector.

19

CHAPTER 2. DATA FRAMES

We can use this logical vector to get the southern countries from geo:
geo[is_southern,]

A tibble: 40 x 7
name region oecd g77 lat long income2017
<chr> <chr> <lgl> <lgl> <dbl> <dbl> <chr>
1 Angola africa FALSE TRUE -12.5 18.5 lower_mid
2 Argentina americas FALSE TRUE -34 -64 upper_mid
3 Australia asia TRUE FALSE -25 135 high
4 Bolivia americas FALSE TRUE -17 -65 lower_mid
5 Botswana africa FALSE TRUE -22 24 upper_mid
6 Brazil americas FALSE TRUE -10 -55 upper_mid
7 Burundi africa FALSE TRUE -3.5 30 low
8 Chile americas TRUE TRUE -33.5 -70.6 high
9 Comoros africa FALSE TRUE -12.2 44.4 low
10 Congo, Dem. Rep. africa FALSE TRUE -2.5 23.5 low
... with 30 more rows

Comparison operators available are:

• x == y – “equal to”
• x != y – “not equal to”
• x < y – “less than”
• x > y – “greater than”
• x <= y – “less than or equal to”
• x >= y – “greater than or equal to”

More complicated conditions can be constructed using logical operators:

• a & b – “and”, TRUE only if both a and b are TRUE.
• a | b – “or”, TRUE if either a or b or both are TRUE.
• ! a – “not” , TRUE if a is FALSE, and FALSE if a is TRUE.

The oecd column of geo tells which countries are in the Organisation for Eco-
nomic Co-operation and Development, and the g77 column tells which countries
are in the Group of 77 (an alliance of developing nations). We could see which
OECD countries are in the southern hemisphere with:
southern_oecd <- is_southern & geo$oecd

geo[southern_oecd,]

A tibble: 3 x 7
name region oecd g77 lat long income2017
<chr> <chr> <lgl> <lgl> <dbl> <dbl> <chr>
1 Australia asia TRUE FALSE -25 135 high
2 Chile americas TRUE TRUE -33.5 -70.6 high
3 New Zealand asia TRUE FALSE -42 174 high

is_southern seems like it should be kept within our geo data frame for future
use. We can add it as a new column of the data frame with:

20

CHAPTER 2. DATA FRAMES

geo$southern <- is_southern

geo

A tibble: 196 x 8
name region oecd g77 lat long income2017 southern
<chr> <chr> <lgl> <lgl> <dbl> <dbl> <chr> <lgl>
1 Afghanistan asia FALSE TRUE 33 66 low FALSE
2 Albania europe FALSE FALSE 41 20 upper_mid FALSE
3 Algeria africa FALSE TRUE 28 3 upper_mid FALSE
4 Andorra europe FALSE FALSE 42.5 1.52 high FALSE
5 Angola africa FALSE TRUE -12.5 18.5 lower_mid TRUE
6 Antigua and Barbuda americas FALSE TRUE 17.0 -61.8 high FALSE
7 Argentina americas FALSE TRUE -34 -64 upper_mid TRUE
8 Armenia europe FALSE FALSE 40.2 45 lower_mid FALSE
9 Australia asia TRUE FALSE -25 135 high TRUE
10 Austria europe TRUE FALSE 47.3 13.3 high FALSE
... with 186 more rows

Challenge: logical indexing

1. Which country is in both the OECD and the G77?

2. Which countries are in neither the OECD nor the G77?

3. Which countries are in the Americas? These have longitudes between -150
and -40.

2.6.1 A dplyr shorthand

The above method is a little laborious. We have to keep mentioning the name of
the data frame, and there is a lot of punctuation to keep track of. dplyr provides
a slightly magical function called filter which lets us write more concisely. For
example:
filter(geo, lat < 0 & oecd)

A tibble: 3 x 8
name region oecd g77 lat long income2017 southern
<chr> <chr> <lgl> <lgl> <dbl> <dbl> <chr> <lgl>
1 Australia asia TRUE FALSE -25 135 high TRUE
2 Chile americas TRUE TRUE -33.5 -70.6 high TRUE
3 New Zealand asia TRUE FALSE -42 174 high TRUE

In the second argument, we are able to refer to columns of the data frame
as though they were variables. The code is beautiful, but also opaque. It’s
important to understand that under the hood we are creating and combining
logical vectors.

21

CHAPTER 2. DATA FRAMES

2.7 Factors

The count function from dplyr can help us understand the contents of some of
the columns in geo. count is also magical, we can refer to columns of the data
frame directly in the arguments to count.
count(geo, region)

A tibble: 4 x 2
region n
<chr> <int>
1 africa 54
2 americas 35
3 asia 59
4 europe 48
count(geo, income2017)

A tibble: 4 x 2
income2017 n
<chr> <int>
1 high 58
2 low 31
3 lower_mid 52
4 upper_mid 55

One annoyance here is that the different categories in income2017 aren’t in a
sensible order. This comes up quite often, for example when sorting or plotting
categorical data. R’s solution is a further type of vector called a factor (think
a factor of an experimental design). A factor holds categorical data, and has
an associated ordered set of levels. It is otherwise quite similar to a character
vector.

Any sort of vector can be converted to a factor using the factor function. This
function defaults to placing the levels in alphabetical order, but takes a levels
argument that can override this.
head(factor(geo$income2017, levels=c("low","lower_mid","upper_mid","high")))

[1] low upper_mid upper_mid high lower_mid high
Levels: low lower_mid upper_mid high

We should modify the income2017 column of the geo table in order to use this:
geo$income2017 <- factor(geo$income2017, levels=c("low","lower_mid","upper_mid","high"))

count now produces the desired order of output:
count(geo, income2017)

A tibble: 4 x 2
income2017 n
<fct> <int>
1 low 31

22

CHAPTER 2. DATA FRAMES

2 lower_mid 52
3 upper_mid 55
4 high 58

When plot is given a factor, it shows a bar plot:
plot(geo$income2017)

low lower_mid upper_mid high

0
10

30
50

When given two factors, it shows a mosaic plot:
plot(geo$income2017, factor(geo$oecd))

x

y

low lower_mid upper_mid high

FA
LS

E
T

R
U

E

0.
0

0.
4

0.
8

Similarly we can count two categorical columns at once.
count(geo, income2017, oecd)

A tibble: 6 x 3
income2017 oecd n
<fct> <lgl> <int>
1 low FALSE 31
2 lower_mid FALSE 52
3 upper_mid FALSE 53
4 upper_mid TRUE 2
5 high FALSE 29
6 high TRUE 29

23

CHAPTER 2. DATA FRAMES

2.8 Readability vs tidyness

The counts we obtained counting income2017 vs oecd were properly tidy in
the sense of containing a single unit of observation per row. However to view
the data, it would be more convenient to have income as columns and OECD
membership as rows. We can use the pivot_wider function from tidyr to
achieve this. (This is also sometimes also called a “cast” or a “spread”.)
counts <- count(geo, income2017, oecd)
pivot_wider(counts, names_from=income2017, values_from=n)

A tibble: 2 x 5
oecd low lower_mid upper_mid high
<lgl> <int> <int> <int> <int>
1 FALSE 31 52 53 29
2 TRUE NA NA 2 29

We could further specify values_fill=list(n=0) to fill in the NA values with 0.

Tip

Tidying is often the first step when exploring a data-set. The tidyr3 package
contains a number of useful functions that help tidy (or un-tidy!) data. We’ve
just seen pivot_wider which spreads two columns into multiple columns. The
inverse of pivot_wider is pivot_longer, which gathers multiple columns into
two columns: a column of column names, and a column of values. pivot_longer
is often the first step when tidying a dataset you have received from the wild.
(This is sometimes also called a “melt” or a “gather”.)

Challenge: counting

Investigate how many OECD and non-OECD nations come from the northern
and southern hemispheres.

1. Using count.
2. By making a mosaic plot.

Remember you may need to convert columns to factors for plot to work, and
that a southern column could be added to geo with:
geo$southern <- geo$lat < 0

2.9 Sorting

Data frames can be sorted using the arrange function in dplyr.
3http://tidyr.tidyverse.org/

24

http://tidyr.tidyverse.org/

CHAPTER 2. DATA FRAMES

arrange(geo, lat)

A tibble: 196 x 8
name region oecd g77 lat long income2017 southern
<chr> <chr> <lgl> <lgl> <dbl> <dbl> <fct> <lgl>
1 New Zealand asia TRUE FALSE -42 174 high TRUE
2 Argentina americas FALSE TRUE -34 -64 upper_mid TRUE
3 Chile americas TRUE TRUE -33.5 -70.6 high TRUE
4 Uruguay americas FALSE TRUE -33 -56 high TRUE
5 Lesotho africa FALSE TRUE -29.5 28.2 lower_mid TRUE
6 South Africa africa FALSE TRUE -29 24 upper_mid TRUE
7 Swaziland africa FALSE TRUE -26.5 31.5 lower_mid TRUE
8 Australia asia TRUE FALSE -25 135 high TRUE
9 Paraguay americas FALSE TRUE -23.3 -58 upper_mid TRUE
10 Botswana africa FALSE TRUE -22 24 upper_mid TRUE
... with 186 more rows

Numeric columns are sorted in numeric order. Character columns will be sorted
in alphabetical order. Factor columns are sorted in order of their levels. The
desc helper function can be used to sort in descending order.
arrange(geo, desc(name))

A tibble: 196 x 8
name region oecd g77 lat long income2017 southern
<chr> <chr> <lgl> <lgl> <dbl> <dbl> <fct> <lgl>
1 Zimbabwe africa FALSE TRUE -19 29.8 low TRUE
2 Zambia africa FALSE TRUE -14.3 28.5 lower_mid TRUE
3 Yemen asia FALSE TRUE 15.5 47.5 lower_mid FALSE
4 Vietnam asia FALSE TRUE 16.2 108. lower_mid FALSE
5 Venezuela americas FALSE TRUE 8 -66 upper_mid FALSE
6 Vanuatu asia FALSE TRUE -16 167 lower_mid TRUE
7 Uzbekistan asia FALSE FALSE 41.7 63.8 lower_mid FALSE
8 Uruguay americas FALSE TRUE -33 -56 high TRUE
9 United States americas TRUE FALSE 39.8 -98.5 high FALSE
10 United Kingdom europe TRUE FALSE 54.8 -2.70 high FALSE
... with 186 more rows

2.10 Joining data frames

Let’s move on to a larger data set. This is from the Gapminder4 project and
contains information about countries over time.
gap <- read_csv("r-intro-files/gap-minder.csv")
gap

A tibble: 4,312 x 5
name year population gdp_percap life_exp

4https://www.gapminder.org

25

https://www.gapminder.org

CHAPTER 2. DATA FRAMES

<chr> <dbl> <dbl> <dbl> <dbl>
1 Afghanistan 1800 3280000 603 28.2
2 Albania 1800 410445 667 35.4
3 Algeria 1800 2503218 715 28.8
4 Andorra 1800 2654 1197 NA
5 Angola 1800 1567028 618 27.0
6 Antigua and Barbuda 1800 37000 757 33.5
7 Argentina 1800 534000 1507 33.2
8 Armenia 1800 413326 514 34
9 Australia 1800 351014 814 34.0
10 Austria 1800 3205587 1847 34.4
... with 4,302 more rows

Quiz

What is the unit of observation in this new data frame?

It would be useful to have general information about countries from geo available
as columns when we use this data frame. gap and geo share a column called
name which can be used to match rows from one to the other.
gap_geo <- left_join(gap, geo, by="name")
gap_geo

A tibble: 4,312 x 12
name year population gdp_percap life_exp region oecd g77 lat long
<chr> <dbl> <dbl> <dbl> <dbl> <chr> <lgl> <lgl> <dbl> <dbl>
1 Afgh~ 1800 3280000 603 28.2 asia FALSE TRUE 33 66
2 Alba~ 1800 410445 667 35.4 europe FALSE FALSE 41 20
3 Alge~ 1800 2503218 715 28.8 africa FALSE TRUE 28 3
4 Ando~ 1800 2654 1197 NA europe FALSE FALSE 42.5 1.52
5 Ango~ 1800 1567028 618 27.0 africa FALSE TRUE -12.5 18.5
6 Anti~ 1800 37000 757 33.5 ameri~ FALSE TRUE 17.0 -61.8
7 Arge~ 1800 534000 1507 33.2 ameri~ FALSE TRUE -34 -64
8 Arme~ 1800 413326 514 34 europe FALSE FALSE 40.2 45
9 Aust~ 1800 351014 814 34.0 asia TRUE FALSE -25 135
10 Aust~ 1800 3205587 1847 34.4 europe TRUE FALSE 47.3 13.3
... with 4,302 more rows, and 2 more variables: income2017 <fct>,
southern <lgl>

The output contains all ways of pairing up rows by name. In this case each row
of geo pairs up with multiple rows of gap.

The “left” in “left join” refers to how rows that can’t be paired up are handled.
left_join keeps all rows from the first data frame but not the second. This is
a good default when the intent is to attaching some extra information to a data
frame. inner_join discard all rows that can’t be paired up. full_join keeps
all rows from both data frames.

26

CHAPTER 2. DATA FRAMES

2.11 Further reading

We’ve covered the fundamentals of dplyr and data frames, but there is much
more to learn. Notably, we haven’t covered the use of the pipe %>% to chain
dplyr verbs together. The “R for Data Science” book5 is an excellent source to
learn more. The Monash Data Fluency “Programming and Tidy data analysis
in R” course6 also covers this.

5http://r4ds.had.co.nz/
6https://monashdatafluency.github.io/r-progtidy/

27

http://r4ds.had.co.nz/
https://monashdatafluency.github.io/r-progtidy/

Chapter 3

Plotting with ggplot2

We already saw some of R’s built in plotting facilities with the function plot. A
more recent and much more powerful plotting library is ggplot2. ggplot2 is
another mini-language within R, a language for creating plots. It implements
ideas from a book called “The Grammar of Graphics”1. The syntax can be a
little strange, but there are plenty of examples in the online documentation2.

ggplot2 is part of the Tidyverse, so loadinging the tidyverse package will load
ggplot2.
library(tidyverse)

We continue with the Gapminder dataset, which we loaded with:
geo <- read_csv("r-intro-files/geo.csv")
gap <- read_csv("r-intro-files/gap-minder.csv")
gap_geo <- left_join(gap, geo, by="name")

3.1 Elements of a ggplot

Producing a plot with ggplot2, we must give three things:

1. A data frame containing our data.
2. How the columns of the data frame can be translated into positions, colors,

sizes, and shapes of graphical elements (“aesthetics”).
3. The actual graphical elements to display (“geometric objects”).

Let’s make our first ggplot.
ggplot(gap_geo, aes(x=year, y=life_exp)) +

geom_point()

1https://www.amazon.com/Grammar-Graphics-Statistics-Computing/dp/0387245448
2http://ggplot2.tidyverse.org/reference/

28

https://www.amazon.com/Grammar-Graphics-Statistics-Computing/dp/0387245448
http://ggplot2.tidyverse.org/reference/

CHAPTER 3. PLOTTING WITH GGPLOT2

20

40

60

80

1800 1850 1900 1950 2000
year

lif
e_

ex
p

The call to ggplot and aes sets up the basics of how we are going to represent
the various columns of the data frame. aes defines the “aesthetics”, which is how
columns of the data frame map to graphical attributes such as x and y position,
color, size, etc. aes is another example of magic “non-standard evaluation”,
arguments to aes may refer to columns of the data frame directly. We then
literally add layers of graphics (“geoms”) to this.

Further aesthetics can be used. Any aesthetic can be either numeric or categorical,
an appropriate scale will be used.
ggplot(gap_geo, aes(x=year, y=life_exp, color=region, size=population)) +

geom_point()

20

40

60

80

1800 1850 1900 1950 2000
year

lif
e_

ex
p

population

5e+08

1e+09

region

africa

americas

asia

europe

3.1.1 Challenge: make a ggplot

This R code will get the data from the year 2010:

29

CHAPTER 3. PLOTTING WITH GGPLOT2

gap2010 <- filter(gap_geo, year == 2010)

Create a ggplot of this with:

• gdp_percap as x.
• life_exp as y.
• population as the size.
• region as the color.

3.2 Further geoms

To draw lines, we need to use a “group” aesthetic.
ggplot(gap_geo, aes(x=year, y=life_exp, group=name, color=region)) +

geom_line()

20

40

60

80

1800 1850 1900 1950 2000
year

lif
e_

ex
p

region

africa

americas

asia

europe

A wide variety of geoms are available. Here we show Tukey box-plots. Note
again the use of the “group” aesthetic, without this ggplot will just show one
big box-plot.
ggplot(gap_geo, aes(x=year, y=life_exp, group=year)) +

geom_boxplot()

30

CHAPTER 3. PLOTTING WITH GGPLOT2

20

40

60

80

1800 1850 1900 1950 2000
year

lif
e_

ex
p

geom_smooth can be used to show trends.
ggplot(gap_geo, aes(x=year, y=life_exp)) +

geom_point() +
geom_smooth()

`geom_smooth()` using method = 'gam' and formula 'y ~ s(x, bs = "cs")'

20

40

60

80

1800 1850 1900 1950 2000
year

lif
e_

ex
p

Aesthetics can be specified globally in ggplot, or as the first argument to
individual geoms. Here, the “group” is applied only to draw the lines, and “color”
is used to produce multiple trend lines:
ggplot(gap_geo, aes(x=year, y=life_exp)) +

geom_line(aes(group=name)) +
geom_smooth(aes(color=oecd))

`geom_smooth()` using method = 'gam' and formula 'y ~ s(x, bs = "cs")'

31

CHAPTER 3. PLOTTING WITH GGPLOT2

20

40

60

80

1800 1850 1900 1950 2000
year

lif
e_

ex
p oecd

FALSE

TRUE

3.3 Highlighting subsets

Geoms can be added that use a different data frame, using the data= argument.
gap_australia <- filter(gap_geo, name == "Australia")

ggplot(gap_geo, aes(x=year, y=life_exp, group=name)) +
geom_line() +
geom_line(data=gap_australia, color="red", size=2)

20

40

60

80

1800 1850 1900 1950 2000
year

lif
e_

ex
p

Notice also that the second geom_line has some further arguments controlling
its appearance. These are not aesthetics, they are not a mapping of data to
appearance, but rather a direct specification of the appearance. There isn’t an
associated scale as when color was an aesthetic.

32

CHAPTER 3. PLOTTING WITH GGPLOT2

3.4 Fine-tuning a plot

Adding labs to a ggplot adjusts the labels given to the axes and legends. A plot
title can also be specified.
ggplot(gap_geo, aes(x=year, y=life_exp)) +

geom_point() +
labs(x="Year", y="Life expectancy", title="Gapminder")

20

40

60

80

1800 1850 1900 1950 2000
Year

Li
fe

 e
xp

ec
ta

nc
y

Gapminder

coord_cartesian can be used to set the limits of the x and y axes. Suppose we
want our y-axis to start at zero.
ggplot(gap_geo, aes(x=year, y=life_exp)) +

geom_point() +
coord_cartesian(ylim=c(0,90))

0

25

50

75

1800 1850 1900 1950 2000
year

lif
e_

ex
p

Type scale_ and press the tab key. You will see functions giving fine-grained
controls over various scales (x, y, color, etc). These allow transformations (eg
log10), and manually specified breaks (labelled values). Very fine grained control
is possible over the appearance of ggplots, see the ggplot2 documentation for

33

CHAPTER 3. PLOTTING WITH GGPLOT2

details and further examples.

3.4.1 Challenge: refine your ggplot

Continuing with your scatter-plot of the 2010 data, add axis labels to your plot.

Give your x axis a log scale by adding scale_x_log10().

3.5 Faceting

Faceting lets us quickly produce a collection of small plots. The plots all have
the same scales and the eye can easily compare them.
ggplot(gap_geo, aes(x=year, y=life_exp, group=name)) +

geom_line() +
facet_wrap(~ region)

asia europe

africa americas

1800 1850 1900 1950 2000 1800 1850 1900 1950 2000

20

40

60

80

20

40

60

80

year

lif
e_

ex
p

Note the use of ~, which we’ve not seen before. ~ syntax is used in R to specify
dependence on some set of variables, for example when specifying a linear model.
Here the information in each plot is dependent on the continent.

3.5.1 Challenge: facet your ggplot

Let’s return again to your scatter-plot of the 2010 data.

Adjust your plot to now show data from all years, with each year shown in a
separate facet, using facet_wrap(~ year).

Advanced: Highlight Australia in your plot.

34

CHAPTER 3. PLOTTING WITH GGPLOT2

3.6 Saving ggplots

The act of plotting a ggplot is actually triggered when it is printed. In an
interactive session we are automatically printing each value we calculate, but if
you are using it with a programming construct such as a for loop or function
you might need to explcitly print() the plot.

Ggplots can be saved using ggsave.
Plot created but not shown.
p <- ggplot(gap_geo, aes(x=year, y=life_exp)) + geom_point()

Only when we try to look at the value p is it shown
p

Alternatively, we can explicitly print it
print(p)

To save to a file
ggsave("test.png", p)

This is an alternative method that works with "base R" plots as well:
png("test.png")
print(p)
dev.off()

3.6.1 Tip about sizing

Figures in papers tend to be quite small. This means text must be proportionately
larger than we usually show on screen. Dots should also be proportionately
larger, and lines proportionately thicker. The way to achieve this using ggsave
is to specify a small width and height, given in inches. To ensure the output
also has good resolution, specify a high dots-per-inch, or use a vector-graphics
format such as PDF or SVG.
ggsave("test2.png", p, width=3, height=3, dpi=600)

35

Chapter 4

Proteomics Data Viz

4.1 Visualizing Proteomics data with ggplot2

Last session we worked on Cross-linking Mass Spectrometry Data. The data
consisted of interaction between 300 yeast nuclear proteins. We also learned
about concepts behind Grammer of Graphics and plotting using ggplot2.

In this tutorial, we will be working on the data from Yeast Nuclear Protein
interaction study using Cross-linking Mass Spectrometry.
library(tidyverse)

We continue with the Cross-linking Proteomics dataset from Cytoscape tutorial.
The data was in excel, therefore we first converted it into Comma separated
file (csv) format.

4.1.1 Optional: Reading excel file into R

If you want to load the excel files files directly to R then you can use another
library readxl.
library(readxl)
nuclear_xl_ms_excel <- readxl::read_excel("r-intro-files/Nuclear_XL_MS.xlsx")
head(nuclear_xl_ms_excel)

A tibble: 6 x 7
Protein1 Protein2 NameProtein1 NameProtein2 PPINovelty PPIEvidenceInfo~
<chr> <chr> <chr> <chr> <chr> <chr>
1 P02293 P04911 H2B1 H2A1 Known Structure
2 P02293 P02309 H2B1 H4 Known Structure
3 P02994 P32471 EF1A EF1B Known Structure
4 P0CX51 P38011 RS16A GBLP Known Structure
5 P02406 P0CX49 RL28 RL18A Novel STRING
6 P33297 P53549 PRS6A PRS10 Known Structure
... with 1 more variable: NumberUniqueLysLysContacts <dbl>

36

CHAPTER 4. PROTEOMICS DATA VIZ

4.2 Exploring the data

library(readxl)
nuclear_xl_ms <- read_csv("r-intro-files/Nuclear_XL_MS.csv")
head(nuclear_xl_ms)

A tibble: 6 x 7
Protein1 Protein2 NameProtein1 NameProtein2 PPINovelty PPIEvidenceInfo~
<chr> <chr> <chr> <chr> <chr> <chr>
1 P02293 P04911 H2B1 H2A1 Known Structure
2 P02293 P02309 H2B1 H4 Known Structure
3 P02994 P32471 EF1A EF1B Known Structure
4 P0CX51 P38011 RS16A GBLP Known Structure
5 P02406 P0CX49 RL28 RL18A Novel STRING
6 P33297 P53549 PRS6A PRS10 Known Structure
... with 1 more variable: NumberUniqueLysLysContacts <dbl>

Now lets examine the dataset with two base R functions str and summary
str(nuclear_xl_ms)

Classes 'spec_tbl_df', 'tbl_df', 'tbl' and 'data.frame': 228 obs. of 7 variables:
$ Protein1 : chr "P02293" "P02293" "P02994" "P0CX51" ...
$ Protein2 : chr "P04911" "P02309" "P32471" "P38011" ...
$ NameProtein1 : chr "H2B1" "H2B1" "EF1A" "RS16A" ...
$ NameProtein2 : chr "H2A1" "H4" "EF1B" "GBLP" ...
$ PPINovelty : chr "Known" "Known" "Known" "Known" ...
$ PPIEvidenceInfoGroup : chr "Structure" "Structure" "Structure" "Structure" ...
$ NumberUniqueLysLysContacts: num 12 6 5 1 2 3 2 3 3 1 ...
- attr(*, "spec")=
.. cols(
.. Protein1 = col_character(),
.. Protein2 = col_character(),
.. NameProtein1 = col_character(),
.. NameProtein2 = col_character(),
.. PPINovelty = col_character(),
.. PPIEvidenceInfoGroup = col_character(),
.. NumberUniqueLysLysContacts = col_double()
..)
summary(nuclear_xl_ms)

Protein1 Protein2 NameProtein1 NameProtein2
Length:228 Length:228 Length:228 Length:228
Class :character Class :character Class :character Class :character
Mode :character Mode :character Mode :character Mode :character
##
##
##
PPINovelty PPIEvidenceInfoGroup NumberUniqueLysLysContacts
Length:228 Length:228 Min. : 1.000

37

CHAPTER 4. PROTEOMICS DATA VIZ

Class :character Class :character 1st Qu.: 1.000
Mode :character Mode :character Median : 1.000
Mean : 1.342
3rd Qu.: 1.000
Max. :12.000

While the data in PPINovelty and PPIEvidenceInfoGroup are charac-
ters/strings, they can also be thought of as categorical.

We will now look into the unique values for the PPINovelty and PPIEvidenceIn-
foGroup columns
unique(nuclear_xl_ms$PPINovelty)

[1] "Known" "Novel"
unique(nuclear_xl_ms$PPIEvidenceInfoGroup)

[1] "Structure" "STRING" "APID" "Unexplained" "Genetic"

R has a class for categorical data known as factors. We can convert these columns
to factors and provide an order to those categories (levels). By default, R will
order the levels of a factor alphabetically but we can override this behaviour by
defining the level order. Here we will order the Evidence based on Strength of
evidence for the interaction
nuclear_xl_ms$PPINovelty<-factor(nuclear_xl_ms$PPINovelty)
nuclear_xl_ms$PPIEvidenceInfoGroup <- factor(nuclear_xl_ms$PPIEvidenceInfoGroup,

levels = c("Structure","APID", "STRING", "Genetic", "Unexplained"))
str(nuclear_xl_ms)

Classes 'spec_tbl_df', 'tbl_df', 'tbl' and 'data.frame': 228 obs. of 7 variables:
$ Protein1 : chr "P02293" "P02293" "P02994" "P0CX51" ...
$ Protein2 : chr "P04911" "P02309" "P32471" "P38011" ...
$ NameProtein1 : chr "H2B1" "H2B1" "EF1A" "RS16A" ...
$ NameProtein2 : chr "H2A1" "H4" "EF1B" "GBLP" ...
$ PPINovelty : Factor w/ 2 levels "Known","Novel": 1 1 1 1 2 1 2 1 1 1 ...
$ PPIEvidenceInfoGroup : Factor w/ 5 levels "Structure","APID",..: 1 1 1 1 3 1 3 1 1 2 ...
$ NumberUniqueLysLysContacts: num 12 6 5 1 2 3 2 3 3 1 ...
- attr(*, "spec")=
.. cols(
.. Protein1 = col_character(),
.. Protein2 = col_character(),
.. NameProtein1 = col_character(),
.. NameProtein2 = col_character(),
.. PPINovelty = col_character(),
.. PPIEvidenceInfoGroup = col_character(),
.. NumberUniqueLysLysContacts = col_double()
..)

38

CHAPTER 4. PROTEOMICS DATA VIZ

4.3 Plotting interactions types

Firstly we will plot the number of Known and novel interactions using with
geom_bar
ggplot(nuclear_xl_ms, aes(x = PPINovelty)) +
geom_bar() +

xlab("Novelty") +
theme_bw()

0

30

60

90

120

Known Novel
Novelty

co
un

t

Now, we will rotate the bars to Y-Axis using coord_flip()
ggplot(nuclear_xl_ms, aes(x = PPINovelty)) +
geom_bar(position = "dodge") +

xlab("Novelty") +
coord_flip() +

theme_bw()

Known

Novel

0 30 60 90 120
count

N
ov

el
ty

Next, step would be to create a stacked bar chart by adding PPIEvidenceIn-
foGroup data on top of each bar

39

CHAPTER 4. PROTEOMICS DATA VIZ

ggplot(nuclear_xl_ms, aes(PPINovelty)) +
geom_bar(aes(fill=PPIEvidenceInfoGroup)) +

xlab("Novelty") +
coord_flip() +

theme_bw()

Known

Novel

0 30 60 90 120
count

N
ov

el
ty

PPIEvidenceInfoGroup

Structure

APID

STRING

Genetic

Unexplained

4.3.0.1 Add Color blind safe color scheme

Specify your own color-blind friendly pallette with 5 colors
cbPalette <- c("#999999", "#E69F00", "#009E73", "#0072B2", "#D55E00")

ggplot(nuclear_xl_ms, aes(PPINovelty)) +
geom_bar(aes(fill=PPIEvidenceInfoGroup)) +

xlab("Novelty") +
coord_flip() +
scale_fill_manual(values=cbPalette)+

theme_bw()

40

CHAPTER 4. PROTEOMICS DATA VIZ

Known

Novel

0 30 60 90 120
count

N
ov

el
ty

PPIEvidenceInfoGroup

Structure

APID

STRING

Genetic

Unexplained

4.4 Individual Proteins

First we will calculate how many times a protein appeared in NameProtein1
column using table function and then sorting by descending order. Next we
will use head() function to print first five proteins with most observation.
counts_source<-count(nuclear_xl_ms, NameProtein1)

arrange(counts_source, desc(n))

A tibble: 161 x 2
NameProtein1 n
<chr> <int>
1 H2B1 10
2 EF1A 7
3 RL27A 5
4 H3 4
5 EF3A 3
6 ODP2 3
7 OSTB 3
8 RL11A 3
9 RL32 3
10 RL7A 3
... with 151 more rows

We could do same thing for NameProtein2 column as well.
counts_target<-count(nuclear_xl_ms, NameProtein2)

arrange(counts_target, desc(n))

A tibble: 185 x 2
NameProtein2 n
<chr> <int>
1 H3 6

41

CHAPTER 4. PROTEOMICS DATA VIZ

2 RS15 5
3 NOP56 4
4 BFR1 3
5 PRS4 3
6 RL14A 3
7 RL6A 3
8 ATPG 2
9 EF1A 2
10 ERP1 2
... with 175 more rows

Now we store the rows containing H2B1 and EF1A proteins in NameProtein1
column in a datafame.
two_protein_df<- filter(nuclear_xl_ms, NameProtein1 %in% c("H2B1","EF1A"))

ggplot(two_protein_df, aes(x=PPINovelty, y=NumberUniqueLysLysContacts)) +
geom_col(aes(fill=PPIEvidenceInfoGroup)) +
labs(x= "Novelty",
y= "Number of Contacts") +
facet_wrap(~NameProtein1)+
theme_bw()

EF1A H2B1

Known Novel Known Novel

0

10

20

30

Novelty

N
um

be
r

of
 C

on
ta

ct
s

PPIEvidenceInfoGroup

Structure

APID

STRING

Unexplained

4.5 Volcano Plot [Optional]

In this section, we will see how to plot a volcano plot for a quantitative proteomics
dataset. This dataset is derived from label-free quantitative proteomics experi-
ment investigating differences in protein profiles between Benign and Malignant
Prostate cancers.

The details can be found on LFQ-Analyst1 under the Demo tab.

There are 20 samples in total with n=10 in each group.
1https://bioinformatics.erc.monash.edu/apps/LFQ-Analyst/

42

https://bioinformatics.erc.monash.edu/apps/LFQ-Analyst/

CHAPTER 4. PROTEOMICS DATA VIZ

A moderated t-test was performed to find differentially expressed proteins in the
dataset. Each row represents a protein along with log fold change and p-values.

In this tutorial we will visualise the results in the form of Volcano Plot.

Firstly, we will load the data.
lfq_data<-read_csv("r-intro-files/LFQ-Analyst_results.csv")
nrow(lfq_data)

[1] 2389
ncol(lfq_data)

[1] 10

The data has quantitative information about 2389 proteins and has 10 columns.

Now lets see the column names.
colnames(lfq_data)

[1] "Gene Name"
[2] "Protein IDs"
[3] "Benign_vs_Malignant_log2 fold change"
[4] "Benign_vs_Malignant_p.val"
[5] "Benign_vs_Malignant_p.adj"
[6] "significant"
[7] "Benign_vs_Malignant_significant"
[8] "imputed"
[9] "num_NAs"
[10] "Protein.names"

For plotting the volcano plot, we need to focus on th three columns

1. Benign_vs_Malignant_log2 fold change
2. Benign_vs_Malignant_p.adj
3. significant

Next we will on the fly convert FDR values to -log10 and plot it against log2
fold change on the X-axis
volcano_plot <- ggplot(lfq_data,

aes(x = `Benign_vs_Malignant_log2 fold change`,
y = -log10(`Benign_vs_Malignant_p.adj`))) +

geom_point(color="grey") +
labs(x= "Log 2 fold change",

y= "-log 10 FDR") +
theme_bw()

volcano_plot

43

CHAPTER 4. PROTEOMICS DATA VIZ

0

2

4

6

−4 −2 0 2 4
Log 2 fold change

−
lo

g
10

 F
D

R

volcano_plot + geom_point(data= filter(lfq_data, significant=="TRUE"), color="black")

0

2

4

6

−4 −2 0 2 4
Log 2 fold change

−
lo

g
10

 F
D

R

44

Chapter 5

Summarizing data

Having loaded and thoroughly explored a data set, we are ready to distill it
down to concise conclusions. At its simplest, this involves calculating summary
statistics like counts, means, and standard deviations. Beyond this is the fitting
of models, and hypothesis testing and confidence interval calculation. R has a
huge number of packages devoted to these tasks and this is a large part of its
appeal, but is beyond the scope of today.

Loading the data as before, if you have not already done so:
library(tidyverse)

geo <- read_csv("r-intro-files/geo.csv")
gap <- read_csv("r-intro-files/gap-minder.csv")
gap_geo <- left_join(gap, geo, by="name")

5.1 Summary functions

R has a variety of functions for summarizing a vector, including: sum, mean, min,
max, median, sd.
mean(c(1,2,3,4))

[1] 2.5

We can use these on the Gapminder data.
gap2010 <- filter(gap_geo, year == 2010)
sum(gap2010$population)

[1] 6949495061
mean(gap2010$life_exp)

[1] NA

45

CHAPTER 5. SUMMARIZING DATA

5.2 Missing values

Why did mean fail? The reason is that life_exp contains missing values (NA).
gap2010$life_exp

[1] 56.20 76.31 76.55 82.66 60.08 76.85 75.82 73.34 81.98 80.50 69.13 73.79
[13] 76.03 70.39 76.68 70.43 79.98 71.38 61.82 72.13 71.64 76.75 57.06 74.19
[25] 77.08 73.86 57.89 57.73 66.12 57.25 81.29 72.45 47.48 56.49 79.12 74.59
[37] 76.44 65.93 57.53 60.43 80.40 56.34 76.33 78.39 79.88 77.47 79.49 63.69
[49] 73.04 74.60 76.72 70.52 74.11 60.93 61.66 76.00 61.30 65.28 80.00 81.42
[61] 62.86 65.55 72.82 80.09 62.16 80.41 71.34 71.25 57.99 55.65 65.49 32.11
[73] 71.58 82.61 74.52 82.03 66.20 69.90 74.45 67.24 80.38 81.42 81.69 74.66
[85] 82.85 75.78 68.37 62.76 60.73 70.10 80.13 78.20 68.45 63.80 73.06 79.85
[97] 46.50 60.77 76.10 NA 73.17 81.35 74.01 60.84 53.07 74.46 77.91 59.46
[109] 80.28 63.72 68.23 73.42 75.47 65.38 69.74 NA 66.18 76.36 73.55 54.48
[121] 66.84 58.60 NA 68.26 80.73 80.90 77.36 58.78 60.53 81.04 76.09 65.33
[133] NA 77.85 58.70 74.07 77.92 69.03 76.30 79.84 79.52 73.66 69.24 64.59
[145] NA 75.48 71.64 71.46 NA 68.91 75.13 64.01 74.65 73.38 55.05 82.69
[157] 75.52 79.45 61.71 53.13 54.27 81.94 74.42 66.29 70.32 46.98 81.52 82.21
[169] 76.15 79.19 69.61 59.30 76.57 71.10 58.74 69.86 72.56 76.89 78.21 67.94
[181] NA 56.81 70.41 76.51 80.34 78.74 76.36 68.77 63.02 75.41 72.27 73.07
[193] 67.51 52.02 49.57 58.13

R will not ignore these unless we explicitly tell it to with na.rm=TRUE.
mean(gap2010$life_exp, na.rm=TRUE)

[1] 70.34005

Ideally we should also use weighted.mean here, to take population into account.
weighted.mean(gap2010$life_exp, gap2010$population, na.rm=TRUE)

[1] 70.96192

NA is a special value. If we try to calculate with NA, the result is NA
NA + 1

[1] NA

is.na can be used to detect NA values, or na.omit can be used to directly remove
rows of a data frame containing them.
is.na(c(1,2,NA,3))

[1] FALSE FALSE TRUE FALSE
cleaned <- filter(gap2010, !is.na(life_exp))
weighted.mean(cleaned$life_exp, cleaned$population)

[1] 70.96192

46

CHAPTER 5. SUMMARIZING DATA

5.3 Grouped summaries

The summarize function in dplyr allows summary functions to be applied to
data frames.
summarize(gap2010, mean_life_exp=weighted.mean(life_exp, population, na.rm=TRUE))

A tibble: 1 x 1
mean_life_exp
<dbl>
1 71.0

So far unremarkable, but summarize comes into its own when the group_by
“adjective” is used.
summarize(

group_by(gap_geo, year),
mean_life_exp=weighted.mean(life_exp, population, na.rm=TRUE))

A tibble: 22 x 2
year mean_life_exp
<dbl> <dbl>
1 1800 30.9
2 1810 31.1
3 1820 31.2
4 1830 31.4
5 1840 31.4
6 1850 31.6
7 1860 30.3
8 1870 31.5
9 1880 32.0
10 1890 32.5
... with 12 more rows

Challenge: summarizing

What is the total population for each year? Plot the result.

Advanced: What is the total GDP for each year? For this you will first need to
calculate GDP per capita times the population of each country.

group_by can be used to group by multiple columns, much like count. We can
use this to see how the rest of the world is catching up to OECD nations in
terms of life expectancy.
result <- summarize(

group_by(gap_geo,year,oecd),

47

CHAPTER 5. SUMMARIZING DATA

mean_life_exp=weighted.mean(life_exp, population, na.rm=TRUE))
result

A tibble: 44 x 3
Groups: year [22]
year oecd mean_life_exp
<dbl> <lgl> <dbl>
1 1800 FALSE 29.9
2 1800 TRUE 34.7
3 1810 FALSE 29.9
4 1810 TRUE 35.2
5 1820 FALSE 30.0
6 1820 TRUE 35.9
7 1830 FALSE 30.0
8 1830 TRUE 36.2
9 1840 FALSE 30.0
10 1840 TRUE 36.2
... with 34 more rows
ggplot(result, aes(x=year,y=mean_life_exp,color=oecd)) + geom_line()

30

40

50

60

70

80

1800 1850 1900 1950 2000
year

m
ea

n_
lif

e_
ex

p

oecd

FALSE

TRUE

A similar plot could be produced using geom_smooth. Differences here are that
we have full control over the summarization process so we were able to use the
exact summarization method we want (weighted.mean for each year), and we
have access to the resulting numeric data as well as the plot. We have reduced a
large data set down to a smaller one that distills out one of the stories present
in this data. However the earlier visualization and exploration activity using
ggplot2 was essential. It gave us an idea of what sort of variability was present
in the data, and any unexpected issues the data might have.

48

CHAPTER 5. SUMMARIZING DATA

5.4 t-test

We will finish this section by demonstrating a t-test. The main point of this
section is to give a flavour of how statistical tests work in R, rather than the
details of what a t-test does.

Has life expectancy increased from 2000 to 2010?
gap2000 <- filter(gap_geo, year == 2000)
gap2010 <- filter(gap_geo, year == 2010)

t.test(gap2010$life_exp, gap2000$life_exp)

##
Welch Two Sample t-test
##
data: gap2010$life_exp and gap2000$life_exp
t = 3.0341, df = 374.98, p-value = 0.002581
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
1.023455 4.792947
sample estimates:
mean of x mean of y
70.34005 67.43185

Statistical routines often have many ways to tweak the details of their operation.
These are specified by further arguments to the function call, to override the
default behaviour. By default, t.test performs an unpaired t-test, but these
are repeated observations of the same countries. We can specify paired=TRUE
to t.test to perform a paired sample t-test and gain some statistical power.
Check this by looking at the help page with ?t.test.

It’s important to first check that both data frames are in the same order.
all(gap2000$name == gap2010$name)

[1] TRUE
t.test(gap2010$life_exp, gap2000$life_exp, paired=TRUE)

##
Paired t-test
##
data: gap2010$life_exp and gap2000$life_exp
t = 13.371, df = 188, p-value < 2.2e-16
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
2.479153 3.337249
sample estimates:
mean of the differences
2.908201

When performing a statistical test, it’s good practice to visualize the data to

49

CHAPTER 5. SUMMARIZING DATA

make sure there is nothing funny going on.
plot(gap2000$life_exp, gap2010$life_exp)
abline(0,1)

50 60 70 80

40
50

60
70

80

gap2000$life_exp

ga
p2

01
0$

lif
e_

ex
p

This is a visual confirmation of the t-test result. If there were no difference
between the years then points would lie approximately evenly above and below
the diagonal line, which is clearly not the case. However the outlier may warrant
investigation.

Thinking in R

The result of a t-test is actually a value we can manipulate further. Two functions
help us here. class gives the “public face” of a value, and typeof gives its
underlying type, the way R thinks of it internally. For example numbers are
“numeric” and have some representation in computer memory, either “integer”
for whole numbers only, or “double” which can hold fractional numbers (stored
in memory in a base-2 version of scientific notation).
class(42)

[1] "numeric"
typeof(42)

[1] "double"

Let’s look at the result of a t-test:

50

CHAPTER 5. SUMMARIZING DATA

result <- t.test(gap2010$life_exp, gap2000$life_exp, paired=TRUE)

class(result)

[1] "htest"
typeof(result)

[1] "list"
names(result)

[1] "statistic" "parameter" "p.value" "conf.int" "estimate"
[6] "null.value" "stderr" "alternative" "method" "data.name"
result$p.value

[1] 4.301261e-29

In R, a t-test is just another function returning just another type of data, so
it can also be a building block. The value it returns is a special type of vector
called a “list”, but with a public face that presents itself nicely. This is a common
pattern in R. Besides printing to the console nicely, this public face may alter
the behaviour of generic functions such as plot and summary.

Similarly a data frame is a list of vectors that is able to present itself nicely.

Lists

Lists are vectors that can hold anything as elements (even other lists!). It’s
possible to create lists with the list function. This becomes especially useful
once you get into the programming side of R. For example writing your own
function that needs to return multiple values, it could do so in the form of a list.
mylist <- list(hello=c("Hello","world"), numbers=c(1,2,3,4))
mylist

$hello
[1] "Hello" "world"
##
$numbers
[1] 1 2 3 4
class(mylist)

[1] "list"
typeof(mylist)

[1] "list"
names(mylist)

[1] "hello" "numbers"

51

CHAPTER 5. SUMMARIZING DATA

Accessing lists can be done by name with $ or by position with [[]].
mylist$hello

[1] "Hello" "world"
mylist[[2]]

[1] 1 2 3 4

Other types not covered here

Matrices are another tabular data type. These come up when doing more
mathematical tasks in R. They are also commonly used in bioinformatics, for
example to represent RNA-Seq count data. A matrix, as compared to a data
frame:

• contains only one type of data, usually numeric (rather than different types
in different columns).

• commonly has rownames as well as colnames. (Base R data frames can
have rownames too, but it is easier to have any unique identifier as a normal
column instead.)

• has individual cells as the unit of observation (rather than rows).

Matrices can be created using as.matrix from a data frame, matrix from a
single vector, or using rbind or cbind with several vectors.

You may also encounter “S4 objects”, especially if you use Bioconductor1 pack-
ages. The syntax for using these is different again, and uses @ to access elements.

Programming

Once you have a useful data analysis, you may want to do it again with different
data. You may have some task that needs to be done many times over. This is
where programming comes in:

• Writing your own functions2.
• For-loops3 to do things multiple times.
• If-statements4 to make decisions.

The “R for Data Science” book5 is an excellent source to learn more. Monash
Data Fluency “Programming and Tidy data analysis in R” course6 also covers
this.

1http://bioconductor.org/
2http://r4ds.had.co.nz/functions.html
3http://r4ds.had.co.nz/iteration.html
4http://r4ds.had.co.nz/functions.html#conditional-execution
5http://r4ds.had.co.nz/
6https://monashdatafluency.github.io/r-progtidy/

52

http://bioconductor.org/
http://r4ds.had.co.nz/functions.html
http://r4ds.had.co.nz/iteration.html
http://r4ds.had.co.nz/functions.html#conditional-execution
http://r4ds.had.co.nz/
https://monashdatafluency.github.io/r-progtidy/

Chapter 6

R Markdown

6.1 Introduction to markdown

Markdown is a powerful “language” for writing different kinds of documents,
such as PDF or HTML in an efficient way, but markdown documents can
also be published as is. The underlying idea for then markdown is that it is
easy-to-write and easy-to-read.

You can use any text editor1 to write your markdown. RStudio2 already has
an inbuilt text editor and because it also has a few additional things that make
markdown writing much easier, we are going to use it’s text editor.

There are a few different flavours of markdown around. We’re going to mention
a few but only focus on one, R Markdown3

• CommonMark4

• GitHub Flavored Markdown (GFM)5

• R Markdown6

R markdown7 like most other flavours builds on top of standard markdown. It
has some R language8 specific features as well as bunch of general enhancers to
markdown. When R Markdown9 is coupled with Rstudio10 it creates a powerfull
means of documenting your work while you are doing it, which you can then
share with colleagues and the public in rapid and clean way.

Let’s get right into it. Firstly, if you haven’t installed it already, please install
the rmarkdown package with:

1https://en.wikipedia.org/wiki/Text_editor
2https://rstudio.com
3https://rmarkdown.rstudio.com/
4http://commonmark.org/
5https://guides.github.com/features/mastering-markdown/
6https://rmarkdown.rstudio.com/
7http://R%20Markdown.rstudio.com/
8https://www.r-project.org/
9http://R%20Markdown.rstudio.com/

10https://rstudio.com

53

https://en.wikipedia.org/wiki/Text_editor
https://rstudio.com
https://rmarkdown.rstudio.com/
http://commonmark.org/
https://guides.github.com/features/mastering-markdown/
https://rmarkdown.rstudio.com/
http://R%20Markdown.rstudio.com/
https://www.r-project.org/
http://R%20Markdown.rstudio.com/
https://rstudio.com

CHAPTER 6. R MARKDOWN

install.packages("rmarkdown")

Open R Markdown file using these drop down menu steps: File -> New File
-> R Markdown. You can put any title and any author name. For now
select Document and Document type HTML. Once you have opened your
.Rmd file, click on the Knit HTML button at the top of your pane.

Knitr is an R package that does all the magic of converting and running your R
markdown and R code respectively. It’s installed when you install R Markdown.

These are three main parts to any R markdown document

1. YAML header section (will talk about it at the very end)

title: "Hello world"
author: "Kirill"
date: "13 July 2016"
output: html_document

2. The R code blocks section

```{r}
plot(pressure)
```

3. Everything else is plain old markdown

Have I been Marked Down

6.2 Document types

There are numerous document types that you can turn your markdown into.
This all depends on the tool, markdown compiler, but for Rstudio11 at least
these a few that a supported.

6.2.0.1 Documents

• html_notebook - Interactive R Notebooks
• html_document - HTML document w/ Bootstrap CSS
• pdf_document - PDF document (via LaTeX template)
• word_document - Microsoft Word document (docx)

6.2.0.2 Presentations (slides)

• ioslides_presentation - HTML presentation with ioslides
11https://rstudio.com

54

https://rstudio.com

CHAPTER 6. R MARKDOWN

6.2.0.3 More

• tufte::tufte_handout - PDF handouts in the style of Edward Tufte
• tufte::tufte_html - HTML handouts in the style of Edward Tufte
• tufte::tufte_book - PDF books in the style of Edward Tufte

More here12 - including websites, books, etc

We are not going to cover all of them, we are mainly going to be working with ei-
ther html_document or html_notebook both produce very similar results though
behave slightly differently. We’ll try to touch a little on ioslides_presentation
towards the end.

6.3 Vanilla Markdown

There’s actually not that much to core (vanilla) markdown. Essentially all of it
can be summarised below:

Header1
Header2
Header3

Paragraphs are separated
by a blank line.

Two spaces at the end of a line
produces a line break.

Text attributes _italic_,
bold, `monospace`.

Horizontal rule:

Bullet list:

* apples
* oranges
* pears

Numbered list:

1. wash
2. rinse
3. repeat

A [link](http://example.com).
12https://rmarkdown.rstudio.com/lesson-9.html

55

https://rmarkdown.rstudio.com/lesson-9.html

CHAPTER 6. R MARKDOWN

![Image](link_to_image)

> Markdown uses email-style
> characters for blockquoting.

Which produces:

56

Chapter 7

Header1

7.1 Header2

7.1.1 Header3

Paragraphs are separated by a blank line.

Two spaces at the end of a line
produces a line break.

Text attributes italic, bold, monospace.

Horizontal rule:

Bullet list:

• apples
• oranges
• pears

Numbered list:

1. wash
2. rinse
3. repeat

A link1.

Markdown uses email-style > characters for blockquoting.

Whenever I need a refresher on markdown basics, I use this cheatsheet2.
1http://example.com
2https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet

57

http://example.com
https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet

CHAPTER 7. HEADER1

7.1.2 Practice vanilla markdown

Now it’s just a matter of learning some of the markdown syntax. Let’s delete all
current text from the opened document except the YAML header and type this
new text in Hello world, I'm learning R markdown! and pressing the Knit
HTML button.

Hello world, I'm learning R markdown!

Not much happened. This is because we didn’t mark our text in any way. You
can put as much text as you want and it will appear as is, unless “specially”
marked to look differently.

Now add the # symbol at the start of the line and press the Knit HTML button
again. We’ll be pressing this button a lot! For those who like keyboard short
cuts use ctrl+shift+k instead.

Hello world, I'm learning R markdown!

How about now? A single hash symbol made it whole lot bigger didn’t it? We’ve
marked this whole line to be the header line.

Now make three new lines with the same text, but different numbers of # symbols,
one, two and three respectively and keep pressing the Knit HTML button

Hello world, I'm learning R markdown!
Hello world, I'm learning R markdown!
Hello world, I'm learning R markdown!

This is how you can specify different headers type using markdown.

Let’s now practice making very short document in markdown with a main topic
section and two subsections. We will add short sentences in each section. We
will start with main section header and a quote. Let’s type the following text
and knit our document.

Introduction

> Here, I'll talk about the rationale behind my experiment.

Now let’s add three bullet points summarising what we are going to write about
in this document and knit the document again.

Introduction

> Here, I'll talk about the rationale behind my experiment.

- Experimental Design
- Materials & Methods
- Analysis

Now let’s add each one of those bullet items as a subsection to the main
“Introduction” section. We are going to use ## to mark subsections and don’t
forget to knit again.

Introduction

58

CHAPTER 7. HEADER1

> Here, I'll talk about the rationale behind my experiment.

- Experimental Design
- Materials & Methods
- Analysis

Experimental Design
Materials & Methods
Analysis

Now let’s add a sentence to each section, briefly describing what they are.

Introduction

> Here, I'll talk about the rationale behind my experiment.

- Experimental Design
- Materials & Methods
- Analysis

Experimental Design

> The organism used, number of samples I have, how many replicates, how many conditions.

Materials & Methods

> What protocol I used, the reagents, the equipment.

Analysis

> Once I got the raw data, how did I process & analyse it.

Let’s add a emphasis to some of the words in our document. We are going
to add italic emphasis to the word “organism” and we are going to add bold
emphasis to the capital letter “p” in the word protocol. You’ll need to knit your
document still.

Introduction

> Here, I'll talk about the rationale behind my experiment.

- Experimental Design
- Materials & Methods
- Analysis

Experimental Design

The _organism_ used, number of samples I have, how many replicates, how many conditions.

Materials & Methods

59

CHAPTER 7. HEADER1

What **p**rotocol I used, the reagents, the equipment.

Analysis

Once I got the raw data, how did I process & analyse it.

Remember that vanilla markdown3 is comprised entirely of punctuation char-
acters.

7.2 Code Chunks

The reason that we are learning R Markdown4 is because it gives us a very
straightforward way of writing plain text documents with inline R code that
will become a very sophisticated document types. The bonus points also come
from the fact that R Markdown files are easy to version control (git) and see the
difference between versions.

This approach of interleaving analysis code, commentary and description is
very explicit, which has direct implication in reproducibility, shareability and
collaboration.

7.2.1 Embedding R code

An R chunk is a “special” block within the document that will be read and
evaluated by knitr, ultimately converting everything into plain markdown. But
for us it means that we can focus on our analysis and embed R code without
having to worry about it. Additionally there are large number of chunk options
that helps with different aspects of the document including code decoration and
evaluation, results and plots rendering and display.

This is how an R code chunk looks like. If you want to include code into your
documents it has to be via R chunks. You can further customise the appearance
of your code in the final document with chunk options.

```{r}

```

The little r there specifies the “engine”, basically telling R Markdown how to
evaluate the code inside the chunk. Here we are saying use R engine (language)
to evaluate the code. The list of languages5 is rather long, R Markdown can
span a much greater area then one might think. In this workshop we are only
going to focus on R language.

Let’s write our first bit of R code inside the R Markdown document. First we
need to start a new R chunk, which we can be done in these ways:

• simply type it out
3https://daringfireball.net/projects/markdown/syntax
4https://rmarkdown.rstudio.com/
5https://bookdown.org/yihui/R%20Markdown/language-engines.html

60

https://daringfireball.net/projects/markdown/syntax
https://rmarkdown.rstudio.com/
https://bookdown.org/yihui/R%20Markdown/language-engines.html

CHAPTER 7. HEADER1

• press insert button at the top of the window
• ctrl+alt+i

Let’s return to our document with the sub header section Analysis. Now
let’s add simple R code to our chunk, type the following code a <- "About to
analyse my data!" and press knitr button to build html document. Note that
as mentioned above we need to use print() statement to get the content of the
variable to the scree/final document.

```{r}
a <- 'About to analyse my data!'
print(a)
```

Tip: each chunk can be run independently in the console by pressing ctrlˆenter
or little green arrow.

7.2.2 Chunk Options

We can tweak many things about your output using different options that we
can include inside curly brackets e.g

```{r chunk_options, more_chunk_options...}

```

The two rather common options are echo=TRUE and eval=TRUE, both by default
are set to true and this is why we didn’t have to pass them in previously.

• echo means show what has been typed in i.e show the code in the final
document

• eval means evaluate or execute that code

Sometimes we might want to show the code, but not execute it and other times
we might just want to execute it and get the results without actually bore
audience with the code.

Let’s try both of these options one at a time. We start with passing echo=FALSE
options first

```{r, echo = FALSE}
print("About to analyse my data!")
```

Okay, we shouldn’t see our original print() statement in the output document.
And now let’s pass eval=FALSE options instead

```{r eval = FALSE}
print("About to analyse my data!")

```

And now we should only see the result of the print() statement and no output.

61

CHAPTER 7. HEADER1

Here is a nice reference6 that has comprehensive cover of all the options you can
pass in.

Let’s now try a different example and use the nuclear_xl_ms dataset from the
proteomics viz segment for this next example. We’ll add another code chunk for
it.

```{r}
library(tidyverse)
nuclear_xl_ms <- read_csv('r-intro-files/Nuclear_XL_MS.csv')
nuclear_xl_ms <- nuclear_xl_ms %>% mutate(
PPINovelty = factor(PPINovelty),
PPIEvidenceInfoGroup = factor(PPIEvidenceInfoGroup, levels = c('Structure','APID', 'STRING', 'Genetic', 'Unexplained'))
)
head(nuclear_xl_ms)
```
library(tidyverse)
nuclear_xl_ms <- read_csv('r-intro-files/Nuclear_XL_MS.csv')
nuclear_xl_ms <- nuclear_xl_ms %>% mutate(

PPINovelty = factor(PPINovelty),
PPIEvidenceInfoGroup = factor(PPIEvidenceInfoGroup, levels = c("Structure","APID", "STRING", "Genetic", "Unexplained"))

)
head(nuclear_xl_ms)

A tibble: 6 x 7
Protein1 Protein2 NameProtein1 NameProtein2 PPINovelty PPIEvidenceInfo~
<chr> <chr> <chr> <chr> <fct> <fct>
1 P02293 P04911 H2B1 H2A1 Known Structure
2 P02293 P02309 H2B1 H4 Known Structure
3 P02994 P32471 EF1A EF1B Known Structure
4 P0CX51 P38011 RS16A GBLP Known Structure
5 P02406 P0CX49 RL28 RL18A Novel STRING
6 P33297 P53549 PRS6A PRS10 Known Structure
... with 1 more variable: NumberUniqueLysLysContacts <dbl>

This table is a bit ugly to look at in your final document. We’ll come back to
data-frame printing later in the YAML section.

Also examine the output carefully - you might notice that we’ve included the
messages from library(tidyverse) and read_csv that are printed to the
console by default. If you do not desire this behaviour and only want to see the
output from head(nuclear_xl_ms) included in the document, message=FALSE
is another code chunk option you can use.

7.2.3 Tip

You might be thinking that you’ve already run library(tidyverse) previously
in the session and that you already have tidyverse packages loaded as well as read
in and mutated the nuclear_xl_ms, you shouldn’t need to run these commands

6https://bookdown.org/yihui/rmarkdown/r-code.html

62

https://bookdown.org/yihui/rmarkdown/r-code.html

CHAPTER 7. HEADER1

again. When you knit a document, it ignores the state of your RStudio session
and runs through the code from start to finish. If your code points to missing files
or uses packages that haven’t been explicitly loaded somewhere in the document,
it will fail to render your document.

You can go between R Markdown and console, to check your code, at any time.
You should see your code block is highlighted differently and you should see a
green arrow at the right hand site of that block. Press the green arrow to get an
output in the console. You can also use ctrl+enter to do the same with the
keyboard short cut.

Here is a good example where we can hide our code from the viewer, since it
isn’t most interesting bit about this data. Let’s turn echo=FALSE options for all
our plots below.

Figure alignment can be done with fig.align options e.g {r fig.align=default}
. default means what ever your style sheet has. The other options are, “left”,
“center” and “right”. let’s try one out.

```{r, echo = FALSE, fig.align = 'right'}
ggplot(nuclear_xl_ms, aes(PPINovelty)) +
geom_bar(aes(fill=PPIEvidenceInfoGroup)) + xlab('Novelty')
coord_flip() + theme_bw()
```

Known

Novel

0 30 60 90 120
count

N
ov

el
ty

PPIEvidenceInfoGroup

Structure

APID

STRING

Genetic

Unexplained

Remember that you can you always execute code in the console by pressing
“green arrow” or using keyborad short cut ctrl+enter

We now know how to align figure to where we want, how about changing the size
of it? We can do that with fig.height and fig.width, the units are inches.
Let’s make 6 X 6 inches figure e.g {r fig.height=6, fig.width=6} . and
also align the figure to the center

63

CHAPTER 7. HEADER1

```{r, echo = FALSE, fig.align = 'right', fig.height=6, fig.width=6}
ggplot(nuclear_xl_ms, aes(PPINovelty)) +
geom_bar(aes(fill=PPIEvidenceInfoGroup)) + xlab('Novelty')
coord_flip() + theme_bw()
```

Known

Novel

0 30 60 90 120
count

N
ov

el
ty

PPIEvidenceInfoGroup

Structure

APID

STRING

Genetic

Unexplained

One last thing we’d like to share with you is how to add a figure legend or a
caption - with fig.cap of course e.g {r, fig.cap="This is my legend"} .
Go ahead and add a figure description.

```{r echo = FALSE, fig.align = 'center', warning=FALSE, fig.height=6, fig.width=6, fig.cap='This figure illustrates breakdown breakdown of protein-protein interaction evidence groups.'}
ggplot(gap_geo, aes(x=year, y=life_exp, group=name, color=region)) +
geom_line()
```

Note that the figure legend follows the same alignment as the figure itself.

There are more chunk options which we encourage you to explore in greater
depth in the R Markdown documentation7. We have only examined a handful

7https://bookdown.org/yihui/rmarkdown/r-code.html

64

https://bookdown.org/yihui/rmarkdown/r-code.html

CHAPTER 7. HEADER1

Known

Novel

0 30 60 90 120
count

N
ov

el
ty

PPIEvidenceInfoGroup

Structure

APID

STRING

Genetic

Unexplained

Figure 7.1: This figure illustrates breakdown breakdown of protein-protein
interaction evidence groups.

65

CHAPTER 7. HEADER1

of figure specific options but there are many more options that allow fine control
over the behavior of the code and cosmetics of the document.

Lastly, we’ll mention that the engine option can be used to specficy different
language types. So you can embed python, BASH, Javascript and a heap of
other languages8 all within the same document.

7.3 YAML header

At the very top of your .Rmd file you can, optionaly, include a YAML block. In
this block you can fine turn your output document, add some metadata and
change the document’s font and theme. You can also pass additional files such
as stylesheet file .css and bibliography file .bib for text citation. We’re only
going to show you a few possible options and will let you explore the rest on
your own.

Navigate to the top of your .Rmd document and find the YAML section there.
Just like with the options we passed in to manipulate R code block, YAML block
also has key = value pairs, but instead they are separated by colon (:). Now
let’s add table of content to our document, this will make it easier to navigate
your page as well as give nice over view of the content our key is toc with value
true or yes which one you prefer better.

title: "Yeast Nuclear Protein interaction study"
author: "Kirill"
date: "13 July 2016"
output:
html_document:
toc: true

Note that you need to bring html_document onto new line and indent it with two
spaces. html_document is a value of output key. output can have other values
e.g pdf_document, word_document. However html_document also becomes a
key for toc value and toc becames a key for its own value.

Now that we have sort out the initial YAML layout, we can continue adding
more options to style our HTML document. The other two useful options that I
like to pass in are toc_depth and number_sections

title: "Yeast Nuclear Protein interaction study"
author: "Kirill"
date: "13 July 2016"
output:
html_document:
toc: true
toc_depth: 4

8https://bookdown.org/yihui/rmarkdown/language-engines.html

66

https://bookdown.org/yihui/rmarkdown/language-engines.html

CHAPTER 7. HEADER1

number_sections: yes

Most of those options are self explanatory. The best way to learn what each
does, is to pass them in. Note that you can comment lines out inside YAML
section with # symbol.

Another two options that can change your document apperance are theme and
highlight9. There are number of different themes and highlight options. I
suggest you find the one you like in your own time.

Remember when we printed the nuclear_xl_ms data-frame, the table rendered
wasn’t particularly nice to look at? We can control the behavior of tables in
html documents in the YAML header10. There are a number of options to select
one from and pass to df_print.

Try out paged.

output:
html_document:
toc: true
toc_depth: 4
df_print: paged

7.4 Alternate Formats

As mentioned in a previous section, output has many options, one of which is
ioslides_presentation. You can simple add:

title: "Hello world"
author: "Kirill"
date: "13 July 2016"
output: ioslides_presentation

at the top of your document and your .Rmd files will be compiled to a slide
presentation instead.

Another way to start with an ioslides_presentation is select presentation
options when you were opening R markdown file. Either way you’ll notice YAML
header reflects your selected output type.

Let’s open new R markdown document and let’s select presentation instead and
let’s select HTML (ioslides) option there. You can still save your files as .Rmd,
and then press the the Knit HTML button.

The syntax for the document is more or less the same, except ## is now used to
mark new slide.

9https://bookdown.org/yihui/rmarkdown/html-document.html#appearance-and-style
10https://bookdown.org/yihui/rmarkdown/html-document.html#data-frame-printing

67

https://bookdown.org/yihui/rmarkdown/html-document.html#appearance-and-style
https://bookdown.org/yihui/rmarkdown/html-document.html#data-frame-printing

CHAPTER 7. HEADER1

ioslides are fairly basic in terms of slideshow presentations. If you find yourself
frustrated with the limitations of ioslides, there are a number of official format
options11, we haven’t had much experience with using them. I’ve been using
the xaringan package12, which isn’t an official R Markdown format but I’ve
found it to be quite powerful, though requires a fair degree of familiarity with R
Markdown/HTMl/CSS.

Alternatively, if you want to produce a PDF document:

title: "Yeast Nuclear Protein interaction study"
author: "Kirill"
date: "13 July 2016"
output: pdf_document

R Markdown documents that render to PDF are compatible with raw LaTeX.
The df_print option is not compatible with paged but will take kable and
tibble. If changing document type, it’s always important to check which YAML
options will carry to the new format and which won’t.

The more format specific syntax used in a document, the harder it is to swap a
document from one format to another. For example, you can generate a very
detailed and customised PDFs from an R Markdown document with heavy usage
of LaTeX. However, LaTeX will not be rendered in a HTML document. So it’s
important to have an idea of how the final document will be used as you work
through it.

We’ve only just scratched the surface of what R Markdown can do! The online
book we’ve been using throughout the course was written in R-Markdown and
so were the slides for the workshop introduction.

7.5 More Resources

• R Markdown cheatsheet13

For a more in-depth R-Markdown tutorial, we recommend:

• R Markdown: The Definitive Guide14

• bookdown: Authoring Books and Technical Documents with R Markdown15

- the bookdown package greatly extends R Markdown
• R for Reproducible Research16 - a workshop delivered by the Monash Bioin-

formatics Platform focused on R Markdown and reproducible workflows
with git.

11https://rmarkdown.rstudio.com/formats.html
12https://github.com/yihui/xaringan
13https://rstudio.com/wp-content/uploads/2015/02/rmarkdown-cheatsheet.pdf
14https://bookdown.org/yihui/rmarkdown/
15https://bookdown.org/yihui/bookdown/
16https://monashdatafluency.github.io/r-rep-res/

68

https://rmarkdown.rstudio.com/formats.html
https://github.com/yihui/xaringan
https://rstudio.com/wp-content/uploads/2015/02/rmarkdown-cheatsheet.pdf
https://bookdown.org/yihui/rmarkdown/
https://bookdown.org/yihui/bookdown/
https://monashdatafluency.github.io/r-rep-res/

CHAPTER 7. HEADER1

7.5.1 Packages That Extend R-Markdown

• blogdown17 - combines R Markdown & Hugo to create general purpose
websites

• bookdown18 - authoring books, thesis, sfotware manuals, etc
• flexdashboards19 - HTML outputs with dashboard layouts
• xaringan20 - slides shows with remark.js

7.5.2 Neat Examples:

• Emi Tanaka’s personal website21 - blogdown for website, xaringan for
slideshows, shiny + plotly for web apps

• Rob Hyndman22 - another blogdown website. Also, see current top talk
topic: How Rmarkdown changed my life23 - uses R Markdown for website,
blog, text books, accademic papers, slides for talks, CV, thesis, exams, etc

7.5.3 Code chunk names

You can name code chunks! In your R-Studio session this even adds a little table
of contents in the bottom left of your source panel that lets you navigate your R
Markdown document via headers and code chunk names.

```{r chunk_name, chunk_opts...}

```

7.5.4 html_document or html_notebook

We’ve been using the html_document format for most of this tutorial. A very
similar looking document is the html_notebook. There’s a large overlap in terms
of YAML options for both.

e.g:

output:
html_notebook:
toc: true
toc_depth: 4
df_print: paged

17https://bookdown.org/yihui/blogdown/
18https://bookdown.org/
19https://rmarkdown.rstudio.com/flexdashboard/
20https://slides.yihui.name/xaringan/
21https://emitanaka.org/
22https://robjhyndman.com/
23https://robjhyndman.com/seminars/rmarkdown/

69

https://bookdown.org/yihui/blogdown/
https://bookdown.org/
https://rmarkdown.rstudio.com/flexdashboard/
https://slides.yihui.name/xaringan/
https://emitanaka.org/
https://robjhyndman.com/
https://robjhyndman.com/seminars/rmarkdown/

CHAPTER 7. HEADER1

One difference is that a html_notebook will include a button on the rendered
webapge to download the .Rmd file that generated the html file. This is one way
to easily share the document, in that someone can view your report and then
download it and run it on their own machine.

The other difference is that when rendering a html_document, it will ignore
the state of the RStudio session and re-run every code block. Variables that
have been exist within the environment but have not been defined inside the
html_document will cause the render step to fail and must be included for the
document to render successfully.

A html_notebook however uses the state of the session. It will only include
the output of code blocks that have been run. It’s less ‘safe’ using a notebook,
because it doesn’t double-check that the document from start to finish is self-
contained. It can include variables and functions that were created seperately
in the environment but then the document doesn’t include instructions on how
that variable was generated or what the function is doing.

7.5.5 Cross-referencing

Let’s learn how to add external and internal links to your document, remember
the syntax for adding links is [DESCRIPTION](link-address). The external
link that we are going to add is going to be this https://rmarkdown.rstudio.com/.
Each one of the bullet points above going to become a link to it section. The
way you reference internal section is by starting your address with a # symbol
then simply using all lower case letters for the section name and all spaces need
to be converted to a dash symbol -. Let’s add those things in and re-build our
document.

Learning Markdown

> I'm still learning

[External resource](https://rmarkdown.rstudio.com/)

Here I'll be learning:

- [markdown](#markdown)
- [R Markdown](#R Markdown)
- [git and github](#git-and-github)

Markdown
Here I'll learning _vanilla_ markdown

R Markdown

Whereas here I'll be learning **R**markdown

ggplot2

70

https://rmarkdown.rstudio.com/

CHAPTER 7. HEADER1

And this section is about plotting

A bonus exercise is to add logos to each sections. Search internet for:

• Markdown logo, and add the image using syntax
• R Markdown logo, and add the image using syntax
• Git logo, and add the image using syntax
• ggplot2 logo, and add the image using syntax

Note for the external resource that is on internet the address must start with
www or https otherwise address will be interpreted as file path.

71

Chapter 8

Next steps

8.1 Deepen your understanding

Our number one recommendation is to read the book “R for Data
Science”1 by Garrett Grolemund and Hadley Wickham.

Also, statistical tasks such as model fitting, hypothesis testing, confidence interval
calculation, and prediction are a large part of R, and one we haven’t demonstrated
fully today. Linear models, and the linear model formula syntax ~, are core to
much of what R has to offer statistically. Many statistical techniques take linear
models as their starting point, including limma2 for differential gene expression,
glm for logistic regression (etc), survival analysis with coxph, and mixed models
to characterize variation within populations.

• “Statistical Models in S” by J.M. Chambers and T.J. Hastie is the primary
reference for this, although there are some small differences between R and
its predecessor S.

• “An Introduction to Statistical Learning”3 by G. James, D. Witten, T.
Hastie and R. Tibshirani can be seen as further development of the ideas in
“Statistical Models in S”, and is available online. It has more of a machine
learning than a statistics flavour to it (the distinction is fuzzy!).

• “Modern Applied Statistics with S” by W.N. Venable and B.D. Ripley is a
well respected reference covering R and S.

• “Linear Models with R” and “Extending the Linear Model with R” by J.
Faraway4 cover linear models, with many practical examples.

1http://r4ds.had.co.nz/
2https://bioconductor.org/packages/release/bioc/html/limma.html
3http://www-bcf.usc.edu/~gareth/ISL/
4http://www.maths.bath.ac.uk/~jjf23/

72

http://r4ds.had.co.nz/
https://bioconductor.org/packages/release/bioc/html/limma.html
http://www-bcf.usc.edu/~gareth/ISL/
http://www.maths.bath.ac.uk/~jjf23/

CHAPTER 8. NEXT STEPS

8.2 Expand your vocabulary

Have a look at these cheat sheets to see what is possible with R.

• RStudio’s collection of cheat sheets5 cover newer packages in R.
• An old-school cheat sheet6 for dinosaurs and people wishing to go deeper.
• A Bioconductor cheat sheet7 for biological data.

The R Manuals8 are the place to look if you need a precise definition of how R
behaves.

8.3 Join the community

Join the Data Fluency community at Monash9.

• Mailing list for workshop and event announcements.
• Slack for discussion.
• Monthly seminars on Data Science topics.
• Drop-in sessions on Friday afternoon.

Meetups in Melbourne:

• MelbURN10

• R-Ladies11

The Carpentries12 run intensive two day workshops on scientific computing and
data science topics worldwide. The style of this present workshop is very much
based on theirs. For bioinformatics, COMBINE13 is an Australian student and
early career researcher organization, and runs Carpentries workshops and similar.

5https://www.rstudio.com/resources/cheatsheets/
6https://cran.r-project.org/doc/contrib/Short-refcard.pdf
7https://github.com/mikelove/bioc-refcard/blob/master/README.Rmd
8https://cran.r-project.org/manuals.html
9https://www.monash.edu/data-fluency

10https://www.meetup.com/en-AU/MelbURN-Melbourne-Users-of-R-Network/
11https://www.meetup.com/en-AU/R-Ladies-Melbourne/
12https://carpentries.org/
13https://combine.org.au/

73

https://www.rstudio.com/resources/cheatsheets/
https://cran.r-project.org/doc/contrib/Short-refcard.pdf
https://github.com/mikelove/bioc-refcard/blob/master/README.Rmd
https://cran.r-project.org/manuals.html
https://www.monash.edu/data-fluency
https://www.meetup.com/en-AU/MelbURN-Melbourne-Users-of-R-Network/
https://www.meetup.com/en-AU/R-Ladies-Melbourne/
https://carpentries.org/
https://combine.org.au/

	Introduction to R
	Starting out in R
	Variables
	Saving code in an R script
	Vectors
	Types of vector
	Indexing vectors
	Sequences
	Functions

	Data frames
	Setting up
	Loading data
	Exploring
	Indexing data frames
	Columns are vectors
	Logical indexing
	Factors
	Readability vs tidyness
	Sorting
	Joining data frames
	Further reading

	Plotting with ggplot2
	Elements of a ggplot
	Further geoms
	Highlighting subsets
	Fine-tuning a plot
	Faceting
	Saving ggplots

	Proteomics Data Viz
	Visualizing Proteomics data with ggplot2
	Exploring the data
	Plotting interactions types
	Individual Proteins
	Volcano Plot [Optional]

	Summarizing data
	Summary functions
	Missing values
	Grouped summaries
	t-test

	R Markdown
	Introduction to markdown
	Document types
	Vanilla Markdown

	Header1
	Header2
	Code Chunks
	YAML header
	Alternate Formats
	More Resources

	Next steps
	Deepen your understanding
	Expand your vocabulary
	Join the community

