
Introduction to R (ResBaz Victoria 2024)

Table of contents

Introduction 4
Source code . 5
Authors and copyright . 5

1 Starting out in R 6
1.1 Variables . 8
1.2 Saving code in an R script . 9
1.3 Vectors . 9
1.4 Types of vector . 10
1.5 Indexing vectors . 11

Challenge: indexing . 12
1.6 Sequences . 12
1.7 Functions . 13

2 Data frames 16
2.1 Setting up . 16
2.2 Loading data . 17
2.3 Exploring . 19
2.4 Indexing data frames . 20
2.5 Columns are vectors . 23

Quiz: reading R code . 24
2.6 Logical indexing . 24

Challenge: logical indexing . 26
2.6.1 A dplyr shorthand . 27

2.7 Factors . 27
2.8 Readability vs tidyness . 30
2.9 Sorting . 31
2.10 Joining data frames . 32

Quiz . 32
2.11 Further reading . 33

3 Plotting with ggplot2 34
3.1 Elements of a ggplot . 34

Challenge: make a ggplot . 36
3.2 Further geoms . 36

2

3.3 Highlighting subsets . 39
Discussion: look at the plot . 40

3.4 Fine-tuning a plot . 40
Challenge: refine your ggplot . 42

3.5 Faceting . 42
Challenge: facet your ggplot . 43

3.6 Saving ggplots . 43

4 Summarizing data 45
4.1 Summary functions . 45
4.2 Missing values . 46
4.3 Grouped summaries . 47

Challenge: summarizing . 48
4.4 t-test . 50

5 Thinking in R 52
5.1 Lists . 53
5.2 Other types not covered here . 54
5.3 Programming . 54

6 Next steps 56
6.1 Deepen your understanding . 56
6.2 Expand your vocabulary . 56
6.3 Find packages for specific data types . 56
6.4 Some pointers on models and statistics . 57

3

Introduction

This is workshop material for the “Introduction to R” workshop given by the Monash Genomics
and Bioinformatics Platform1 for the ResBaz Victoria 20242. Our teaching style is based on
the style of The Carpentries3.

• Slideshow4

• PDF version for printing5

• ZIP of data files used in this workshop6

During the workshop we will be using Posit Cloud to use R over the web:

• Posit Cloud7

You can also install R on your own computer. There are two things to download and install:

• Download R8

• Download RStudio9

1https://www.monash.edu/researchinfrastructure/mgbp
2https://resbaz.github.io/resbazvic2024/
3https://carpentries.org/
4slides.html
5r-intro-resbaz2024.pdf
6r-intro.zip
7https://posit.cloud/
8https://cran.rstudio.com/
9https://www.rstudio.com/products/rstudio/download/

4

https://www.monash.edu/researchinfrastructure/mgbp
https://resbaz.github.io/resbazvic2024/
https://carpentries.org/
slides.html
r-intro-resbaz2024.pdf
r-intro.zip
https://posit.cloud/
https://cran.rstudio.com/
https://www.rstudio.com/products/rstudio/download/

R is the language itself. RStudio provides a convenient environment in which to use R, either
on your local computer or on a server.

Source code

This book was created in R using the rmarkdown and bookdown packages!

• GitHub page10

Authors and copyright

This course is developed for the Monash Genomics and Bioinformatics Platform by Paul Har-
rison.

This work is licensed under a CC BY-4: Creative Commons Attribution 4.0 International
License11. The attribution is “Monash Genomics and Bioinformatics Platform” if copying or
modifying these notes.

Data files are derived from Gapminder, which has a CC BY-4 license. The attribution is “Free
data from www.gapminder.org”. The data is given here in a form designed to teach various
points about the R language. Refer to the Gapminder site12 for the original form of the data
if using it for other uses.

10https://github.com/MonashBioinformaticsPlatform/r-intro-resbazvic2024
11http://creativecommons.org/licenses/by/4.0/
12https://www.gapminder.org

5

https://github.com/MonashBioinformaticsPlatform/r-intro-resbazvic2024
http://creativecommons.org/licenses/by/4.0/
https://www.gapminder.org

1 Starting out in R

R is both a programming language and an interactive environment for data exploration and
statistics. Today we will be concentrating on R as an interactive environment.

Working with R is primarily text-based. The basic mode of use for R is that the user types
in a command in the R language and presses enter, and then R computes and displays the
result.

We will be working in RStudio1. The easiest way to get started is to go to Posit Cloud2

and create a new project. Monash staff and students can log in using their Monash Google
account.

The main way of working with R is the console, where you enter commands and view results.
RStudio surrounds this with various conveniences. In addition to the console panel, RStudio
provides panels containing:

• A text editor, where R commands can be recorded for future reference.
• A history of commands that have been typed on the console.
• An “environment” pane with a list of variables, which contain values that R has been

told to save from previous commands.
• A file manager.
• Help on the functions available in R.
• A panel to show plots.

1https://www.rstudio.com/products/rstudio/download/
2https://rstudio.cloud/

6

https://www.rstudio.com/products/rstudio/download/
https://rstudio.cloud/

Open RStudio, click on the “Console” pane, type 1+1 and press enter. R displays the result
of the calculation. In this document, we will show such an interaction with R as below.

1+1

[1] 2

+ is called an operator. R has the operators you would expect for mathematics: + - * / ^. It
also has further operators that do other things.

* has higher precedence than +. We can use brackets if necessary (). Try 1+2*3 and
(1+2)*3.

Spaces can be used to make code easier to read.

We can compare with == < > <= >= !=. This produces a logical value, TRUE or FALSE. Note
the double equals, ==, for equality comparison.

2 * 2 == 4

[1] TRUE

There are also character strings such as "string". A character string must be surrounded by
either single or double quotes.

7

1.1 Variables

A variable is a name for a value. We can create a new variable by assigning a value to it using
<-.

width <- 5

RStudio helpfully shows us the variable in the “Environment” pane. We can also print it by
typing the name of the variable and hitting enter. In general, R will print to the console any
object returned by a function or operation unless we assign it to a variable.

width

[1] 5

Examples of valid variables names: hello, subject_id, subject.ID, x42. Spaces aren’t ok
inside variable names. Dots (.) are ok in R, unlike in many other languages. Numbers are ok,
except as the first character. Punctuation is not allowed, with two exceptions: _ and ..

We can do arithmetic with the variable:

Area of a square
width * width

[1] 25

and even save the result in another variable:

Save area in "area" variable
area <- width * width

We can also change a variable’s value by assigning it a new value:

width <- 10
width

[1] 10

8

area

[1] 25

Notice that the value of area we calculated earlier hasn’t been updated. Assigning a new value
to one variable does not change the values of other variables. This is different to a spreadsheet,
but usual for programming languages.

1.2 Saving code in an R script

Once we’ve created a few variables, it becomes important to record how they were calculated
so we can reproduce them later.

The usual workflow is to save your code in an R script (“.R file”). Go to “File/New File/R
Script” to create a new R script. Code in your R script can be sent to the console by selecting
it or placing the cursor on the correct line, and then pressing Control-Enter (Command-
Enter on a Mac).

Tip

Add comments to code, using lines starting with the # character. This makes it easier
for others to follow what the code is doing (and also for us the next time we come back
to it).

1.3 Vectors

A vector of numbers is a collection of numbers. “Vector” means different things in different
fields (mathematics, geometry, biology), but in R it is a fancy name for a collection of numbers.
We call the individual numbers elements of the vector.

We can make vectors with c(), for example c(1,2,3). c means “combine”. R is obsesssed
with vectors, in R even single numbers are vectors of length one. Many things that can be
done with a single number can also be done with a vector. For example arithmetic can be
done on vectors as it can be on single numbers.

myvec <- c(10,20,30,40,50)
myvec

[1] 10 20 30 40 50

9

myvec + 1

[1] 11 21 31 41 51

myvec + myvec

[1] 20 40 60 80 100

length(myvec)

[1] 5

c(60, myvec)

[1] 60 10 20 30 40 50

c(myvec, myvec)

[1] 10 20 30 40 50 10 20 30 40 50

When we talk about the length of a vector, we are talking about the number of numbers in
the vector.

1.4 Types of vector

We will also encounter vectors of character strings, for example "hello" or c("hello","world").
Also we will encounter “logical” vectors, which contain TRUE and FALSE values. R also has
“factors”, which are categorical vectors, and behave much like character vectors (think the
factors in an experiment).

Because vectors can only contain one type of thing, when you mix different types R will choose
a lowest common denominator type of vector, a type that can contain everything we are trying
to put in it. A different language might stop with an error, but R tries to soldier on as best
it can. A number can be represented as a character string, but a character string can not be
represented as a number, so when we try to put both in the same vector R converts everything
to a character string.

10

c("hello", 1, TRUE)

[1] "hello" "1" "TRUE"

1.5 Indexing vectors

Access elements of a vector with [], for example myvec[1] to get the first element. You can
also assign to a specific element of a vector.

myvec[1]

[1] 10

myvec[2]

[1] 20

myvec[2] <- 5
myvec

[1] 10 5 30 40 50

Can we use a vector to index another vector? Yes!

myind <- c(4,3,2)
myvec[myind]

[1] 40 30 5

We could equivalently have written:

myvec[c(4,3,2)]

[1] 40 30 5

11

Challenge: indexing

We can create and index character vectors as well. A cafe is using R to create their menu.

menu <- c("spam", "eggs", "beans", "bacon", "sausage")

1. What does menu[-3] produce? Based on what you find, use indexing to create a version
of menu without "spam".

2. Use indexing to create a vector containing spam, eggs, sausage, spam, and spam.

3. Add a new item, “lobster”, to menu, and store the result in a variable called new_menu.

1.6 Sequences

Another way to create a vector is with ::

1:10

[1] 1 2 3 4 5 6 7 8 9 10

This can be useful when combined with indexing:

menu[1:4]

[1] "spam" "eggs" "beans" "bacon"

Sequences are useful for other things, such as a starting point for calculations:

x <- 1:10
x*x

[1] 1 4 9 16 25 36 49 64 81 100

plot(x, x*x)

12

2 4 6 8 10

0
20

60
10

0

x

x
*

x

1.7 Functions

Functions are the things that do all the work for us in R: calculate, manipulate data, read and
write to files, produce plots. R has many built in functions and we will also be loading more
specialized functions from “packages”.

We’ve already seen several functions: c(), length(), and plot(). Let’s now have a look
at sum().

sum(myvec)

[1] 135

We called the function sum with the argument myvec, and it returned the value 135. We can
get help on how to use sum with:

?sum

Some functions take more than one argument. Let’s look at the function rep, which means
“repeat”, and which can take a variety of different arguments. In the simplest case, it takes a
value and the number of times to repeat that value.

rep(42, 10)

[1] 42 42 42 42 42 42 42 42 42 42

13

As with many functions in R—which is obsessed with vectors—the thing to be repeated can
be a vector with multiple elements.

rep(c(1,2,3), 10)

[1] 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

So far we have used positional arguments, where R determines which argument is which by
the order in which they are given. We can also give arguments by name. For example, the
above is equivalent to

rep(c(1,2,3), times=10)

[1] 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

rep(x=c(1,2,3), 10)

[1] 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

rep(times=10, x=c(1,2,3))

[1] 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

Arguments can have default values, and a function may have many different possible arguments
that make it do obscure things. For example, rep can also take an argument each=. It’s typical
for a function to be invoked with some number of positional arguments, which are always given,
plus some less commonly used arguments, typically given by name.

rep(c(1,2,3), each=3)

[1] 1 1 1 2 2 2 3 3 3

rep(c(1,2,3), each=3, times=5)

[1] 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3 1 1
[39] 1 2 2 2 3 3 3

Earlier we used : to create sequences. The seq function gives you extra flexibility.

14

seq(2, 10, by=2)

[1] 2 4 6 8 10

Check the documentation with ?seq for further arguments.

15

2 Data frames

Data frame is R’s name for tabular data. We generally want each row in a data frame to
represent a unit of observation, and each column to contain a different type of information
about the units of observation. Tabular data in this form is called “tidy data”1.

Today we will be using a collection of modern packages collectively known as the Tidyverse2.
R and its predecessor S have a history dating back to 1976. The Tidyverse fixes some dubious
design decisions baked into “base R”, including having its own slightly improved form of data
frame, which is called a tibble. Sticking to the Tidyverse where possible is generally safer,
Tidyverse packages are more willing to generate errors rather than ignore problems.

2.1 Setting up

Our first step is to download the files we need and to install the Tidyverse. This is the one
step where we ask you to copy and paste some code:

Download files for this workshop
download.file(
"https://monashbioinformaticsplatform.github.io/r-intro-resbazvic2024/r-intro.zip",
destfile="r-intro.zip")

unzip("r-intro.zip")

Install Tidyverse
install.packages("tidyverse")

If you run into problems installing all of the tidyverse you may have more success installing
individual packages:

install.packages(c("dplyr","readr","tidyr","ggplot2"))

We need to load the tidyverse package in order to use it.

1http://vita.had.co.nz/papers/tidy-data.html
2https://www.tidyverse.org/

16

http://vita.had.co.nz/papers/tidy-data.html
https://www.tidyverse.org/

library(tidyverse)

OR
library(dplyr)
library(readr)
library(tidyr)
library(ggplot2)

The tidyverse package loads various other packages, setting up a modern R environment. In
this section we will be using functions from the dplyr, readr and tidyr packages.

R is a language with mini-languages within it that solve specific problem domains. dplyr is
such a mini-language, a set of “verbs” (functions) that work well together. dplyr, with the help
of tidyr for some more complex operations, provides a way to perform most manipulations
on a data frame that you might need.

2.2 Loading data

We will use the read_csv function from readr to load a data set. (See also read.csv in base
R.) CSV stands for Comma Separated Values, and is a text format used to store tabular data.
The first few lines of the file we are loading are shown below. Conventionally the first line
contains column headings.

name,region,oecd,g77,lat,long,income2017
Afghanistan,asia,FALSE,TRUE,33,66,low
Albania,europe,FALSE,FALSE,41,20,upper_mid
Algeria,africa,FALSE,TRUE,28,3,upper_mid
Andorra,europe,FALSE,FALSE,42.50779,1.52109,high
Angola,africa,FALSE,TRUE,-12.5,18.5,lower_mid

geo <- read_csv("r-intro/geo.csv")

Rows: 196 Columns: 7
-- Column specification --
Delimiter: ","
chr (3): name, region, income2017
dbl (2): lat, long
lgl (2): oecd, g77

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.

17

geo

A tibble: 196 x 7
name region oecd g77 lat long income2017
<chr> <chr> <lgl> <lgl> <dbl> <dbl> <chr>

1 Australia asia TRUE FALSE -25 135 high
2 Brunei asia FALSE TRUE 4.5 115. high
3 Cambodia asia FALSE TRUE 13 105 lower_mid
4 China asia FALSE TRUE 35 105 upper_mid
5 Fiji asia FALSE TRUE -18 178 upper_mid
6 Hong Kong, China asia FALSE FALSE 22.3 114. high
7 Indonesia asia FALSE TRUE -5 120 lower_mid
8 Japan asia TRUE FALSE 35.7 140. high
9 Kiribati asia FALSE FALSE 1.42 173. lower_mid
10 North Korea asia FALSE TRUE 40 127 low
i 186 more rows

read_csv has guessed the type of data each column holds:

• <chr> - character strings
• <dbl> - numerical values. Technically these are “doubles”, which is a way of storing

numbers with 15 digits precision.
• <lgl> - logical values, TRUE or FALSE.

We will also encounter:

• <int> - integers, a fancy name for whole numbers.
• <fct> - factors, categorical data. We will get to this shortly.

You can also see this data frame referring to itself as “a tibble”. This is the Tidyverse’s
improved form of data frame. Tibbles present themselves more conveniently than base R data
frames. Base R data frames don’t show the type of each column, and output every row when
you try to view them.

Tip

A data frame can also be created from vectors, with the tibble function. (See also
data.frame in base R.) For example:

tibble(foo=c(10,20,30), bar=c("a","b","c"))

A tibble: 3 x 2
foo bar

18

<dbl> <chr>
1 10 a
2 20 b
3 30 c

The argument names become column names in the data frame.

Tip

The path to the file on our server is "r-intro/geo.csv". This says, starting from your
working directory, look in the directory r-intro for the file geo.csv. The steps in the
path are separated by /. Your working directory is shown at the top of the console
pane. The path needed might be different on your own computer, depending where you
downloaded the file.
One way to work out the correct path is to find the file in the file browser pane, click on
it and select “Import Dataset…”.

2.3 Exploring

The View function gives us a spreadsheet-like view of the data frame.

View(geo)

print with the n argument can be used to show more than the first 10 rows on the console.

print(geo, n=200)

We can extract details of the data frame with further functions:

19

nrow(geo)

[1] 196

ncol(geo)

[1] 7

colnames(geo)

[1] "name" "region" "oecd" "g77" "lat"
[6] "long" "income2017"

summary(geo)

name region oecd g77
Length:196 Length:196 Mode :logical Mode :logical
Class :character Class :character FALSE:165 FALSE:65
Mode :character Mode :character TRUE :31 TRUE :131

lat long income2017
Min. :-42.00 Min. :-175.000 Length:196
1st Qu.: 4.00 1st Qu.: -5.625 Class :character
Median : 17.42 Median : 21.875 Mode :character
Mean : 19.03 Mean : 23.004
3rd Qu.: 39.82 3rd Qu.: 51.892
Max. : 65.00 Max. : 179.145

2.4 Indexing data frames

Data frames can be subset using [row,column] syntax.

geo[4,2]

20

A tibble: 1 x 1
region
<chr>

1 asia

Note that while this is a single value, it is still wrapped in a data frame. (This is a behaviour
specific to Tidyverse data frames.) More on this in a moment.

Columns can be given by name.

geo[4,"region"]

A tibble: 1 x 1
region
<chr>

1 asia

The column or row may be omitted, thereby retrieving the entire row or column.

geo[4,]

A tibble: 1 x 7
name region oecd g77 lat long income2017
<chr> <chr> <lgl> <lgl> <dbl> <dbl> <chr>

1 China asia FALSE TRUE 35 105 upper_mid

geo[,"region"]

A tibble: 196 x 1
region
<chr>

1 asia
2 asia
3 asia
4 asia
5 asia
6 asia
7 asia
8 asia
9 asia
10 asia
i 186 more rows

21

Multiple rows or columns may be retrieved using a vector.

rows_wanted <- c(1,3,5)
geo[rows_wanted,]

A tibble: 3 x 7
name region oecd g77 lat long income2017
<chr> <chr> <lgl> <lgl> <dbl> <dbl> <chr>

1 Australia asia TRUE FALSE -25 135 high
2 Cambodia asia FALSE TRUE 13 105 lower_mid
3 Fiji asia FALSE TRUE -18 178 upper_mid

Vector indexing can also be written on a single line.

geo[c(1,3,5),]

A tibble: 3 x 7
name region oecd g77 lat long income2017
<chr> <chr> <lgl> <lgl> <dbl> <dbl> <chr>

1 Australia asia TRUE FALSE -25 135 high
2 Cambodia asia FALSE TRUE 13 105 lower_mid
3 Fiji asia FALSE TRUE -18 178 upper_mid

geo[1:7,]

A tibble: 7 x 7
name region oecd g77 lat long income2017
<chr> <chr> <lgl> <lgl> <dbl> <dbl> <chr>

1 Australia asia TRUE FALSE -25 135 high
2 Brunei asia FALSE TRUE 4.5 115. high
3 Cambodia asia FALSE TRUE 13 105 lower_mid
4 China asia FALSE TRUE 35 105 upper_mid
5 Fiji asia FALSE TRUE -18 178 upper_mid
6 Hong Kong, China asia FALSE FALSE 22.3 114. high
7 Indonesia asia FALSE TRUE -5 120 lower_mid

22

2.5 Columns are vectors

Ok, so how do we actually get data out of a data frame?

Under the hood, a data frame is a list of column vectors. We can use $ to retrieve columns.
Occasionally it is also useful to use [[]] to retrieve columns, for example if the column name
we want is stored in a variable.

head(geo$region)

[1] "asia" "asia" "asia" "asia" "asia" "asia"

head(geo[["region"]])

[1] "asia" "asia" "asia" "asia" "asia" "asia"

To get the “region” value of the 4th row as above, but unwrapped, we can use:

geo$region[4]

[1] "asia"

For example, to plot the longitudes and latitudes we could use:

plot(geo$long, geo$lat)

−150 −100 −50 0 50 100 150

−
40

0
20

60

geo$long

ge
o$

la
t

23

Quiz: reading R code

You encounter some wild R code, and aren’t sure what it does. Based on R syntax you’ve
encountered so far, what roles are the different names in this code playing?

highest <- geo$name[head(order(geo$lat, decreasing=TRUE), n=10)]

Find all examples of:

A. The name of a variable to store a value to.
B. The name of a variable to retrieve the value from.
C. The name of a column to get from a data frame.
D. The name of a function to call.
E. The name of an argument to a function call.

See here3 for answers.

2.6 Logical indexing

A method of indexing that we haven’t discussed yet is logical indexing. Instead of specifying
the row number or numbers that we want, we can give a logical vector which is TRUE for the
rows we want and FALSE otherwise. This can also be used with vectors.

We will first do this in a slightly verbose way in order to understand it, then learn a more
concise way to do this using the dplyr package.

Southern countries have latitude less than zero.

is_southern <- geo$lat < 0

head(is_southern)

[1] TRUE FALSE FALSE FALSE TRUE FALSE

sum(is_southern)

[1] 40

3answers/answers-reading-r-code.html

24

answers/answers-reading-r-code.html

sum treats TRUE as 1 and FALSE as 0, so it tells us the number of TRUE elements in the
vector.

We can use this logical vector to get the southern countries from geo:

geo[is_southern,]

A tibble: 40 x 7
name region oecd g77 lat long income2017
<chr> <chr> <lgl> <lgl> <dbl> <dbl> <chr>

1 Australia asia TRUE FALSE -25 135 high
2 Fiji asia FALSE TRUE -18 178 upper_mid
3 Indonesia asia FALSE TRUE -5 120 lower_mid
4 Nauru asia FALSE FALSE -0.517 167. upper_mid
5 New Zealand asia TRUE FALSE -42 174 high
6 Papua New Guinea asia FALSE TRUE -6 147 lower_mid
7 Samoa asia FALSE TRUE -13.8 -172. upper_mid
8 Solomon Islands asia FALSE TRUE -8 159 lower_mid
9 Timor-Leste asia FALSE TRUE -8.83 126. lower_mid
10 Tonga asia FALSE TRUE -20 -175 upper_mid
i 30 more rows

Comparison operators available are:

• x == y – “equal to”
• x != y – “not equal to”
• x < y – “less than”
• x > y – “greater than”
• x <= y – “less than or equal to”
• x >= y – “greater than or equal to”

More complicated conditions can be constructed using logical operators:

• a & b – “and”, TRUE only if both a and b are TRUE.
• a | b – “or”, TRUE if either a or b or both are TRUE.
• ! a – “not” , TRUE if a is FALSE, and FALSE if a is TRUE.

The oecd column of geo tells which countries are in the Organisation for Economic Co-
operation and Development, and the g77 column tells which countries are in the Group of
77 (an alliance of developing nations). We could see which OECD countries are in the south-
ern hemisphere with:

25

southern_oecd <- is_southern & geo$oecd

geo[southern_oecd,]

A tibble: 3 x 7
name region oecd g77 lat long income2017
<chr> <chr> <lgl> <lgl> <dbl> <dbl> <chr>

1 Australia asia TRUE FALSE -25 135 high
2 New Zealand asia TRUE FALSE -42 174 high
3 Chile americas TRUE TRUE -33.5 -70.6 high

is_southern seems like it should be kept within our geo data frame for future use. We can
add it as a new column of the data frame with:

geo$southern <- is_southern

geo

A tibble: 196 x 8
name region oecd g77 lat long income2017 southern
<chr> <chr> <lgl> <lgl> <dbl> <dbl> <chr> <lgl>

1 Australia asia TRUE FALSE -25 135 high TRUE
2 Brunei asia FALSE TRUE 4.5 115. high FALSE
3 Cambodia asia FALSE TRUE 13 105 lower_mid FALSE
4 China asia FALSE TRUE 35 105 upper_mid FALSE
5 Fiji asia FALSE TRUE -18 178 upper_mid TRUE
6 Hong Kong, China asia FALSE FALSE 22.3 114. high FALSE
7 Indonesia asia FALSE TRUE -5 120 lower_mid TRUE
8 Japan asia TRUE FALSE 35.7 140. high FALSE
9 Kiribati asia FALSE FALSE 1.42 173. lower_mid FALSE
10 North Korea asia FALSE TRUE 40 127 low FALSE
i 186 more rows

Challenge: logical indexing

1. Which country is in both the OECD and the G77?

2. Which countries are in neither the OECD nor the G77?

3. Which countries are in the Americas? These have longitudes between -150 and -40.

26

2.6.1 A dplyr shorthand

The above method is a little laborious. We have to keep mentioning the name of the data
frame, and there is a lot of punctuation to keep track of. dplyr provides a slightly magical
function called filter which lets us write more concisely. For example:

filter(geo, lat < 0 & oecd)

A tibble: 3 x 8
name region oecd g77 lat long income2017 southern
<chr> <chr> <lgl> <lgl> <dbl> <dbl> <chr> <lgl>

1 Australia asia TRUE FALSE -25 135 high TRUE
2 New Zealand asia TRUE FALSE -42 174 high TRUE
3 Chile americas TRUE TRUE -33.5 -70.6 high TRUE

In the second argument, we are able to refer to columns of the data frame as though they were
variables. The code is beautiful, but also opaque. It’s important to understand that under the
hood we are creating and combining logical vectors.

2.7 Factors

The count function from dplyr can help us understand the contents of some of the columns in
geo. count is also magical, we can refer to columns of the data frame directly in the arguments
to count.

count(geo, region)

A tibble: 4 x 2
region n
<chr> <int>

1 africa 54
2 americas 35
3 asia 59
4 europe 48

count(geo, income2017)

27

A tibble: 4 x 2
income2017 n
<chr> <int>

1 high 58
2 low 31
3 lower_mid 52
4 upper_mid 55

One annoyance here is that the different categories in income2017 aren’t in a sensible order.
This comes up quite often, for example when sorting or plotting categorical data. R’s solution
is a further type of vector called a factor (think a factor of an experimental design). A factor
holds categorical data, and has an associated ordered set of levels. It is otherwise quite similar
to a character vector.

Any sort of vector can be converted to a factor using the factor function. This function
defaults to placing the levels in alphabetical order, but takes a levels argument that can
override this.

head(factor(geo$income2017, levels=c("low","lower_mid","upper_mid","high")))

[1] high high lower_mid upper_mid upper_mid high
Levels: low lower_mid upper_mid high

We should modify the income2017 column of the geo table in order to use this:

geo$income2017 <- factor(geo$income2017, levels=c("low","lower_mid","upper_mid","high"))

count now produces the desired order of output:

count(geo, income2017)

A tibble: 4 x 2
income2017 n
<fct> <int>

1 low 31
2 lower_mid 52
3 upper_mid 55
4 high 58

When plot is given a factor, it shows a bar plot:

28

plot(geo$income2017)

low lower_mid upper_mid high

0
10

30
50

When given two factors, it shows a mosaic plot:

plot(geo$income2017, factor(geo$oecd))

x

y

low lower_mid upper_mid high

T
R

U
E

FA
LS

E

0.
0

0.
4

0.
8

Similarly we can count two categorical columns at once.

count(geo, income2017, oecd)

A tibble: 6 x 3
income2017 oecd n
<fct> <lgl> <int>

29

1 low FALSE 31
2 lower_mid FALSE 52
3 upper_mid FALSE 53
4 upper_mid TRUE 2
5 high FALSE 29
6 high TRUE 29

2.8 Readability vs tidyness

The counts we obtained counting income2017 vs oecd were properly tidy in the sense of
containing a single unit of observation per row. However to view the data, it would be more
convenient to have income as columns and OECD membership as rows. We can use the
pivot_wider function from tidyr to achieve this. (This is also sometimes also called a “cast”
or a “spread”.)

counts <- count(geo, income2017, oecd)
pivot_wider(counts, names_from=income2017, values_from=n)

A tibble: 2 x 5
oecd low lower_mid upper_mid high
<lgl> <int> <int> <int> <int>

1 FALSE 31 52 53 29
2 TRUE NA NA 2 29

We could further specify values_fill=list(n=0) to fill in the NA values with 0. Or when
using count, make sure all the relevant columns are factors and specify .drop=FALSE.

Tip

Tidying is often the first step when exploring a data-set. The tidyra package con-
tains a number of useful functions that help tidy (or un-tidy!) data. We’ve just
seen pivot_wider which spreads two columns into multiple columns. The inverse of
pivot_wider is pivot_longer, which gathers multiple columns into two columns: a col-
umn of column names, and a column of values. pivot_longer is often the first step
when tidying a dataset you have received from the wild. (This is sometimes also called a
“melt” or a “gather”.)
Here’s an animation illustrating these functions.b

ahttp://tidyr.tidyverse.org/
bhttps://www.garrickadenbuie.com/project/tidyexplain/#pivot-wider-and-longer

30

http://tidyr.tidyverse.org/
https://www.garrickadenbuie.com/project/tidyexplain/#pivot-wider-and-longer

2.9 Sorting

Data frames can be sorted using the arrange function in dplyr.

arrange(geo, lat)

A tibble: 196 x 8
name region oecd g77 lat long income2017 southern
<chr> <chr> <lgl> <lgl> <dbl> <dbl> <fct> <lgl>

1 New Zealand asia TRUE FALSE -42 174 high TRUE
2 Argentina americas FALSE TRUE -34 -64 upper_mid TRUE
3 Chile americas TRUE TRUE -33.5 -70.6 high TRUE
4 Uruguay americas FALSE TRUE -33 -56 high TRUE
5 Lesotho africa FALSE TRUE -29.5 28.2 lower_mid TRUE
6 South Africa africa FALSE TRUE -29 24 upper_mid TRUE
7 Swaziland africa FALSE TRUE -26.5 31.5 lower_mid TRUE
8 Australia asia TRUE FALSE -25 135 high TRUE
9 Paraguay americas FALSE TRUE -23.3 -58 upper_mid TRUE
10 Botswana africa FALSE TRUE -22 24 upper_mid TRUE
i 186 more rows

Numeric columns are sorted in numeric order. Character columns will be sorted in alphabetical
order. Factor columns are sorted in order of their levels. The desc helper function can be
used to sort in descending order.

arrange(geo, desc(name))

A tibble: 196 x 8
name region oecd g77 lat long income2017 southern
<chr> <chr> <lgl> <lgl> <dbl> <dbl> <fct> <lgl>

1 Zimbabwe africa FALSE TRUE -19 29.8 low TRUE
2 Zambia africa FALSE TRUE -14.3 28.5 lower_mid TRUE
3 Yemen asia FALSE TRUE 15.5 47.5 lower_mid FALSE
4 Vietnam asia FALSE TRUE 16.2 108. lower_mid FALSE
5 Venezuela americas FALSE TRUE 8 -66 upper_mid FALSE
6 Vanuatu asia FALSE TRUE -16 167 lower_mid TRUE
7 Uzbekistan asia FALSE FALSE 41.7 63.8 lower_mid FALSE
8 Uruguay americas FALSE TRUE -33 -56 high TRUE
9 United States americas TRUE FALSE 39.8 -98.5 high FALSE
10 United Kingdom europe TRUE FALSE 54.8 -2.70 high FALSE
i 186 more rows

31

2.10 Joining data frames

Let’s move on to a larger data set. This is from the Gapminder4 project and contains infor-
mation about countries over time.

gap <- read_csv("r-intro/gap-minder.csv")
gap

A tibble: 4,312 x 5
name year population gdp_percap life_exp
<chr> <dbl> <dbl> <dbl> <dbl>

1 Afghanistan 1800 3280000 603 28.2
2 Albania 1800 410445 667 35.4
3 Algeria 1800 2503218 715 28.8
4 Andorra 1800 2654 1197 NA
5 Angola 1800 1567028 618 27.0
6 Antigua and Barbuda 1800 37000 757 33.5
7 Argentina 1800 534000 1507 33.2
8 Armenia 1800 413326 514 34
9 Australia 1800 351014 814 34.0
10 Austria 1800 3205587 1847 34.4
i 4,302 more rows

Quiz

What does each row represent in this new data frame?

It would be useful to have general information about countries from geo available as columns
when we use this data frame. gap and geo share a column called name which can be used to
match rows from one to the other.

gap_geo <- left_join(gap, geo, by="name")
gap_geo

A tibble: 4,312 x 12
name year population gdp_percap life_exp region oecd g77 lat long
<chr> <dbl> <dbl> <dbl> <dbl> <chr> <lgl> <lgl> <dbl> <dbl>

1 Afghani~ 1800 3280000 603 28.2 asia FALSE TRUE 33 66
2 Albania 1800 410445 667 35.4 europe FALSE FALSE 41 20

4https://www.gapminder.org

32

https://www.gapminder.org

3 Algeria 1800 2503218 715 28.8 africa FALSE TRUE 28 3
4 Andorra 1800 2654 1197 NA europe FALSE FALSE 42.5 1.52
5 Angola 1800 1567028 618 27.0 africa FALSE TRUE -12.5 18.5
6 Antigua~ 1800 37000 757 33.5 ameri~ FALSE TRUE 17.0 -61.8
7 Argenti~ 1800 534000 1507 33.2 ameri~ FALSE TRUE -34 -64
8 Armenia 1800 413326 514 34 europe FALSE FALSE 40.2 45
9 Austral~ 1800 351014 814 34.0 asia TRUE FALSE -25 135
10 Austria 1800 3205587 1847 34.4 europe TRUE FALSE 47.3 13.3
i 4,302 more rows
i 2 more variables: income2017 <fct>, southern <lgl>

The output contains all ways of pairing up rows by name. In this case each row of geo pairs
up with multiple rows of gap.

Tip

The “left” in “left join” refers to how rows that can’t be paired up are handled. left_join
keeps all rows from the first data frame but not the second. This is a good default when
the intent is to attaching some extra information to a data frame. inner_join discards
all rows that can’t be paired up. full_join keeps all rows from both data frames.
Here are some animations illustrating joins.a

ahttps://www.garrickadenbuie.com/project/tidyexplain/#mutating-joins

2.11 Further reading

We’ve covered the fundamentals of dplyr and data frames, but there is much more to learn.
Notably, we haven’t covered the use of the pipe |> to chain dplyr verbs together (and you may
also come across an older version of the pipe symbol %>%). The “R for Data Science” book5 is
an excellent source to learn more. The Monash Data Fluency “Programming and Tidy data
analysis in R” course6 also covers this.

5https://r4ds.hadley.nz/
6https://monashdatafluency.github.io/r-progtidy/

33

https://www.garrickadenbuie.com/project/tidyexplain/#mutating-joins
https://r4ds.hadley.nz/
https://monashdatafluency.github.io/r-progtidy/

3 Plotting with ggplot2

We already saw some of R’s built in plotting facilities with the function plot. A more recent
and much more powerful plotting library is ggplot2. ggplot2 is another mini-language within
R, a language for creating plots. It implements ideas from a book called “The Grammar of
Graphics”1. The syntax can be a little strange, but there are plenty of examples in the online
documentation2.

ggplot2 is part of the Tidyverse, so loading the tidyverse package will load ggplot2.

library(tidyverse)

We continue with the Gapminder dataset, which we loaded with:

geo <- read_csv("r-intro/geo.csv")
gap <- read_csv("r-intro/gap-minder.csv")
gap_geo <- left_join(gap, geo, by="name")

3.1 Elements of a ggplot

Producing a plot with ggplot2, we must give three things:

1. A data frame containing our data.
2. How the columns of the data frame can be translated into positions, colors, sizes, and

shapes of graphical elements (“aesthetics”).
3. The actual graphical elements to display (“geometric objects”).

Let’s make our first ggplot.

ggplot(gap_geo, aes(x=year, y=life_exp)) +
geom_point()

1https://www.amazon.com/Grammar-Graphics-Statistics-Computing/dp/0387245448
2http://ggplot2.tidyverse.org/reference/

34

https://www.amazon.com/Grammar-Graphics-Statistics-Computing/dp/0387245448
http://ggplot2.tidyverse.org/reference/

20

40

60

80

1800 1850 1900 1950 2000
year

lif
e_

ex
p

The call to ggplot and aes sets up the basics of how we are going to represent the various
columns of the data frame. aes defines the “aesthetics”, which is how columns of the data
frame map to graphical attributes such as x and y position, color, size, etc. aes is another
example of magic “non-standard evaluation”, arguments to aes may refer to columns of the
data frame directly. We then literally add layers of graphics (“geoms”) to this.

Further aesthetics can be used. Any aesthetic can be either numeric or categorical, an appro-
priate scale will be used.

ggplot(gap_geo, aes(x=year, y=life_exp, color=region, size=population)) +
geom_point()

35

20

40

60

80

1800 1850 1900 1950 2000
year

lif
e_

ex
p

region

africa

americas

asia

europe

population

5.0e+08

1.0e+09

Challenge: make a ggplot

This R code will get the data from the year 2010:

gap2010 <- filter(gap_geo, year == 2010)

Create a ggplot of this with:

• gdp_percap as x.
• life_exp as y.
• population as the size.
• region as the color.

3.2 Further geoms

To draw lines, we need to use a “group” aesthetic.

ggplot(gap_geo, aes(x=year, y=life_exp, group=name, color=region)) +
geom_line()

36

20

40

60

80

1800 1850 1900 1950 2000
year

lif
e_

ex
p

region

africa

americas

asia

europe

A wide variety of geoms are available. Here we show violin plots. Note again the use
of the “group” aesthetic, without this ggplot will just show one big violin. geom_jitter,
geom_boxplot, and the ggbeeswarm3 package are some further ways to show distributions.

ggplot(gap_geo, aes(x=year, y=life_exp, group=year)) +
geom_violin()

20

40

60

80

1800 1850 1900 1950 2000
year

lif
e_

ex
p

geom_smooth can be used to show trends.
3https://cran.r-project.org/web/packages/ggbeeswarm/index.html

37

https://cran.r-project.org/web/packages/ggbeeswarm/index.html

ggplot(gap_geo, aes(x=year, y=life_exp)) +
geom_point() +
geom_smooth()

`geom_smooth()` using method = 'gam' and formula = 'y ~ s(x, bs = "cs")'

20

40

60

80

1800 1850 1900 1950 2000
year

lif
e_

ex
p

Aesthetics can be specified globally in ggplot, or as the first argument to individual geoms.
Here, the “group” is applied only to draw the lines, and “color” is used to produce multiple
trend lines:

ggplot(gap_geo, aes(x=year, y=life_exp)) +
geom_line(aes(group=name)) +
geom_smooth(aes(color=oecd))

`geom_smooth()` using method = 'gam' and formula = 'y ~ s(x, bs = "cs")'

38

20

40

60

80

1800 1850 1900 1950 2000
year

lif
e_

ex
p oecd

FALSE

TRUE

3.3 Highlighting subsets

Geoms can be added that use a different data frame, using the data= argument.

gap_australia <- filter(gap_geo, name == "Australia")

ggplot(gap_geo, aes(x=year, y=life_exp, group=name)) +
geom_line() +
geom_line(data=gap_australia, color="red", size=2)

20

40

60

80

1800 1850 1900 1950 2000
year

lif
e_

ex
p

39

Notice also that the second geom_line has some further arguments controlling its appear-
ance. These are not aesthetics, they are not a mapping of data to appearance, but rather a
direct specification of the appearance. There isn’t an associated scale as when color was an
aesthetic.

Discussion: look at the plot

What do you notice about the data before 1870?

A plot can raise questions about how the data was gathered, and informs how you fit models
and perform tests on it.

Visualize, visualize, visualize!

3.4 Fine-tuning a plot

Adding labs to a ggplot adjusts the labels given to the axes and legends. A plot title can also
be specified.

ggplot(gap_geo, aes(x=year, y=life_exp)) +
geom_point() +
labs(x="Year", y="Life expectancy", title="Gapminder")

20

40

60

80

1800 1850 1900 1950 2000
Year

Li
fe

 e
xp

ec
ta

nc
y

Gapminder

40

Now the figure has proper labels and titles. We would also like to change the look of it a little,
so we apply an alternative theme with theme_bw(). There are a variety of themes available
in ggplot2, and there are packages that define further themes. We would also like the title to
be in the center, so we do a further customization with the theme() function (for more detail
please see the docs ?theme).

ggplot(gap_geo, aes(x=year, y=life_exp)) +
geom_point() +
labs(x="Year", y="Life expectancy", title="Gapminder") +
theme_bw() +
theme(plot.title = element_text(hjust = 0.5))

20

40

60

80

1800 1850 1900 1950 2000
Year

Li
fe

 e
xp

ec
ta

nc
y

Gapminder

Now the figure looks better.

coord_cartesian can be used to set the limits of the x and y axes. Suppose we want our
y-axis to start at zero.

ggplot(gap_geo, aes(x=year, y=life_exp)) +
geom_point() +
coord_cartesian(ylim=c(0,90))

41

0

25

50

75

1800 1850 1900 1950 2000
year

lif
e_

ex
p

Type scale_ and press the tab key. You will see functions giving fine-grained controls over
various scales (x, y, color, etc). These allow transformations (eg log10), and manually specified
breaks (labelled values). Very fine grained control is possible over the appearance of ggplots,
see the ggplot2 documentation for details and further examples.

Challenge: refine your ggplot

Continuing with your scatter-plot of the 2010 data, add axis labels to your plot.

Give your x axis a log scale by adding scale_x_log10().

3.5 Faceting

Faceting lets us quickly produce a collection of small plots. The plots all have the same scales
and the eye can easily compare them.

ggplot(gap_geo, aes(x=year, y=life_exp, group=name)) +
geom_line() +
facet_wrap(~ region)

42

asia europe

africa americas

1800 1850 1900 1950 2000 1800 1850 1900 1950 2000

20

40

60

80

20

40

60

80

year

lif
e_

ex
p

Note the use of ~, which we’ve not seen before. ~ syntax is used in R to specify dependence
on some set of variables, for example when specifying a linear model. Here the information in
each plot is dependent on the continent.

Challenge: facet your ggplot

Let’s return again to your scatter-plot of the 2010 data.

Adjust your plot to now show data from all years, with each year shown in a separate facet,
using facet_wrap(~ year).

Advanced: Highlight Australia in your plot.

3.6 Saving ggplots

The act of plotting a ggplot is actually triggered when it is printed. In an interactive session we
are automatically printing each value we calculate, but if you are using it with a programming
construct such as a for loop or function you might need to explcitly print() the plot.

Ggplots can be saved using ggsave.

Plot created but not shown.
p <- ggplot(gap_geo, aes(x=year, y=life_exp)) + geom_point()

Only when we try to look at the value p is it shown

43

p

Alternatively, we can explicitly print it
print(p)

To save to a file
ggsave("test.png", p)

This is an alternative method that works with "base R" plots as well:
png("test.png")
print(p)
dev.off()

Tip about sizing

Figures in papers tend to be quite small. This means text must be proportionately larger
than we usually show on screen. Dots should also be proportionately larger, and lines
proportionately thicker. The way to achieve this using ggsave is to specify a small width
and height, given in inches. To ensure the output also has good resolution, specify a high
dots-per-inch, or use a vector-graphics format such as PDF or SVG.

ggsave("test2.png", p, width=3, height=3, dpi=600)

44

4 Summarizing data

Having loaded and thoroughly explored a data set, we are ready to distill it down to concise
conclusions. At its simplest, this involves calculating summary statistics like counts, means,
and standard deviations. Beyond this is the fitting of models, and hypothesis testing and
confidence interval calculation. R has a huge number of packages devoted to these tasks and
this is a large part of its appeal, but is beyond the scope of today.

Loading the data as before, if you have not already done so:

library(tidyverse)

geo <- read_csv("r-intro/geo.csv")
gap <- read_csv("r-intro/gap-minder.csv")
gap_geo <- left_join(gap, geo, by="name")

4.1 Summary functions

R has a variety of functions for summarizing a vector, including: sum, mean, min, max, median,
sd.

mean(c(1,2,3,4))

[1] 2.5

We can use these on the Gapminder data.

gap2010 <- filter(gap_geo, year == 2010)
sum(gap2010$population)

[1] 6949495061

45

mean(gap2010$life_exp)

[1] NA

4.2 Missing values

Why did mean fail? The reason is that life_exp contains missing values (NA).

gap2010$life_exp

[1] 56.20 76.31 76.55 82.66 60.08 76.85 75.82 73.34 81.98 80.50 69.13 73.79
[13] 76.03 70.39 76.68 70.43 79.98 71.38 61.82 72.13 71.64 76.75 57.06 74.19
[25] 77.08 73.86 57.89 57.73 66.12 57.25 81.29 72.45 47.48 56.49 79.12 74.59
[37] 76.44 65.93 57.53 60.43 80.40 56.34 76.33 78.39 79.88 77.47 79.49 63.69
[49] 73.04 74.60 76.72 70.52 74.11 60.93 61.66 76.00 61.30 65.28 80.00 81.42
[61] 62.86 65.55 72.82 80.09 62.16 80.41 71.34 71.25 57.99 55.65 65.49 32.11
[73] 71.58 82.61 74.52 82.03 66.20 69.90 74.45 67.24 80.38 81.42 81.69 74.66
[85] 82.85 75.78 68.37 62.76 60.73 70.10 80.13 78.20 68.45 63.80 73.06 79.85
[97] 46.50 60.77 76.10 NA 73.17 81.35 74.01 60.84 53.07 74.46 77.91 59.46
[109] 80.28 63.72 68.23 73.42 75.47 65.38 69.74 NA 66.18 76.36 73.55 54.48
[121] 66.84 58.60 NA 68.26 80.73 80.90 77.36 58.78 60.53 81.04 76.09 65.33
[133] NA 77.85 58.70 74.07 77.92 69.03 76.30 79.84 79.52 73.66 69.24 64.59
[145] NA 75.48 71.64 71.46 NA 68.91 75.13 64.01 74.65 73.38 55.05 82.69
[157] 75.52 79.45 61.71 53.13 54.27 81.94 74.42 66.29 70.32 46.98 81.52 82.21
[169] 76.15 79.19 69.61 59.30 76.57 71.10 58.74 69.86 72.56 76.89 78.21 67.94
[181] NA 56.81 70.41 76.51 80.34 78.74 76.36 68.77 63.02 75.41 72.27 73.07
[193] 67.51 52.02 49.57 58.13

R will not ignore these unless we explicitly tell it to with na.rm=TRUE.

mean(gap2010$life_exp, na.rm=TRUE)

[1] 70.34005

Ideally we should also use weighted.mean here, to take population into account.

46

weighted.mean(gap2010$life_exp, gap2010$population, na.rm=TRUE)

[1] 70.96192

NA is a special value. If we try to calculate with NA, the result is NA

NA + 1

[1] NA

is.na can be used to detect NA values, or na.omit can be used to directly remove rows of a
data frame containing them.

is.na(c(1,2,NA,3))

[1] FALSE FALSE TRUE FALSE

cleaned <- filter(gap2010, !is.na(life_exp))
weighted.mean(cleaned$life_exp, cleaned$population)

[1] 70.96192

4.3 Grouped summaries

The summarize function in dplyr allows summary functions to be applied to data frames.

summarize(gap2010, mean_life_exp = weighted.mean(life_exp, population, na.rm=TRUE))

A tibble: 1 x 1
mean_life_exp

<dbl>
1 71.0

So far unremarkable, but summarize comes into its own when the .by argument is used to
group data. (There is also an older style of doing this using a function called group_by.)

47

summarize(
gap_geo,
mean_life_exp = weighted.mean(life_exp, population, na.rm=TRUE),
.by = year)

A tibble: 22 x 2
year mean_life_exp

<dbl> <dbl>
1 1800 30.9
2 1810 31.1
3 1820 31.2
4 1830 31.4
5 1840 31.4
6 1850 31.6
7 1860 30.3
8 1870 31.5
9 1880 32.0
10 1890 32.5
i 12 more rows

Challenge: summarizing

What is the total population for each year? Plot the result.

Advanced: What is the total GDP for each year? For this you will first need to calculate GDP
per capita times the population of each country.

The .by argument can be used to group by multiple columns, much like count. We need to
use c() for this, as below. We can use this to see how the rest of the world is catching up to
OECD nations in terms of life expectancy.

result <- summarize(
gap_geo,
mean_life_exp = weighted.mean(life_exp, population, na.rm=TRUE),
.by = c(year, oecd))

result

A tibble: 44 x 3
year oecd mean_life_exp

<dbl> <lgl> <dbl>
1 1800 FALSE 29.9

48

2 1800 TRUE 34.7
3 1810 FALSE 29.9
4 1810 TRUE 35.2
5 1820 FALSE 30.0
6 1820 TRUE 35.9
7 1830 FALSE 30.0
8 1830 TRUE 36.2
9 1840 FALSE 30.0
10 1840 TRUE 36.2
i 34 more rows

ggplot(result, aes(x=year,y=mean_life_exp,color=oecd)) + geom_line()

30

40

50

60

70

80

1800 1850 1900 1950 2000
year

m
ea

n_
lif

e_
ex

p

oecd

FALSE

TRUE

A similar plot could be produced using geom_smooth. Differences here are that we have full
control over the summarization process so we were able to use the exact summarization method
we want (weighted.mean for each year), and we have access to the resulting numeric data as
well as the plot. We have reduced a large data set down to a smaller one that distills out one
of the stories present in this data. However the earlier visualization and exploration activity
using ggplot2 was essential. It gave us an idea of what sort of variability was present in the
data, and any unexpected issues the data might have.

49

4.4 t-test

We will finish this section by demonstrating a t-test. The main point of this section is to give
a flavour of how statistical tests work in R, rather than the details of what a t-test does.

Has life expectancy increased from 2000 to 2010?

gap2000 <- filter(gap_geo, year == 2000)
gap2010 <- filter(gap_geo, year == 2010)

t.test(gap2010$life_exp, gap2000$life_exp)

Welch Two Sample t-test

data: gap2010$life_exp and gap2000$life_exp
t = 3.0341, df = 374.98, p-value = 0.002581
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
1.023455 4.792947
sample estimates:
mean of x mean of y
70.34005 67.43185

Statistical routines often have many ways to tweak the details of their operation. These are
specified by further arguments to the function call, to override the default behaviour. By
default, t.test performs an unpaired t-test, but these are repeated observations of the same
countries. We can specify paired=TRUE to t.test to perform a paired sample t-test and gain
some statistical power. Check this by looking at the help page with ?t.test.

It’s important to first check that both data frames are in the same order.

all(gap2000$name == gap2010$name)

[1] TRUE

t.test(gap2010$life_exp, gap2000$life_exp, paired=TRUE)

Paired t-test

50

data: gap2010$life_exp and gap2000$life_exp
t = 13.371, df = 188, p-value < 2.2e-16
alternative hypothesis: true mean difference is not equal to 0
95 percent confidence interval:
2.479153 3.337249
sample estimates:
mean difference

2.908201

When performing a statistical test, it’s good practice to visualize the data to make sure there
is nothing funny going on.

plot(gap2000$life_exp, gap2010$life_exp)
abline(0,1)

50 60 70 80

40
50

60
70

80

gap2000$life_exp

ga
p2

01
0$

lif
e_

ex
p

This is a visual confirmation of the t-test result. If there were no difference between the years
then points would lie approximately evenly above and below the diagonal line, which is clearly
not the case. However the outlier may warrant investigation.

51

5 Thinking in R

The result of a t-test is actually a value we can manipulate further. Two functions help us
here. class gives the “public face” of a value, and typeof gives its underlying type, the way
R thinks of it internally. For example numbers are “numeric” and have some representation
in computer memory, either “integer” for whole numbers only, or “double” which can hold
fractional numbers (stored in memory in a base-2 version of scientific notation).

class(42)

[1] "numeric"

typeof(42)

[1] "double"

Let’s look at the result of a t-test:

result <- t.test(gap2010$life_exp, gap2000$life_exp, paired=TRUE)

class(result)

[1] "htest"

typeof(result)

[1] "list"

names(result)

[1] "statistic" "parameter" "p.value" "conf.int" "estimate"
[6] "null.value" "stderr" "alternative" "method" "data.name"

52

result$p.value

[1] 4.301261e-29

In R, a t-test is just another function returning just another type of data, so it can also be
a building block. The value it returns is a special type of vector called a “list”, but with a
public face that presents itself nicely. This is a common pattern in R. Besides printing to the
console nicely, this public face may alter the behaviour of generic functions such as plot and
summary.

Similarly a data frame is a list of vectors that is able to present itself nicely.

5.1 Lists

Lists are vectors that can hold anything as elements (even other lists!). It’s possible to create
lists with the list function. This becomes especially useful once you get into the programming
side of R. For example writing your own function that needs to return multiple values, it could
do so in the form of a list.

mylist <- list(hello=c("Hello","world"), numbers=c(1,2,3,4))
mylist

$hello
[1] "Hello" "world"

$numbers
[1] 1 2 3 4

class(mylist)

[1] "list"

typeof(mylist)

[1] "list"

53

names(mylist)

[1] "hello" "numbers"

Accessing lists can be done by name with $ or by position with [[]].

mylist$hello

[1] "Hello" "world"

mylist[[2]]

[1] 1 2 3 4

5.2 Other types not covered here

Matrices are another tabular data type. These come up when doing more mathematical tasks
in R. They are also commonly used in bioinformatics, for example to represent RNA-Seq count
data. A matrix, as compared to a data frame:

• contains only one type of data, usually numeric (rather than different types in different
columns).

• commonly has rownames as well as colnames. (Base R data frames can have rownames
too, but it is easier to have any unique identifier as a normal column instead.)

• has individual cells as the unit of observation (rather than rows).

Matrices can be created using as.matrix from a data frame, matrix from a single vector, or
using rbind or cbind with several vectors.

You may also encounter “S4 objects”, especially if you use Bioconductor1 packages. The syntax
for using these is different again, and uses @ to access elements.

5.3 Programming

Once you have a useful data analysis, you may want to do it again with different data. You
may have some task that needs to be done many times over. This is where programming comes
in:

• Writing your own functions2.
1http://bioconductor.org/
2http://r4ds.had.co.nz/functions.html

54

http://bioconductor.org/
http://r4ds.had.co.nz/functions.html

• For-loops3 to do things multiple times.
• If-statements4 to make decisions.

The “R for Data Science” book5 is an excellent source to learn more. Monash Data Fluency
“Programming and Tidy data analysis in R” course6 also covers this.

3http://r4ds.had.co.nz/iteration.html
4http://r4ds.had.co.nz/functions.html#conditional-execution
5http://r4ds.had.co.nz/
6https://monashdatafluency.github.io/r-progtidy/

55

http://r4ds.had.co.nz/iteration.html
http://r4ds.had.co.nz/functions.html#conditional-execution
http://r4ds.had.co.nz/
https://monashdatafluency.github.io/r-progtidy/

6 Next steps

6.1 Deepen your understanding

Our number one recommendation is to read the book “R for Data Science”1 by
Garrett Grolemund and Hadley Wickham.

The R Manuals2 are the place to look if you need a precise definition of how R behaves.

6.2 Expand your vocabulary

Have a look at these cheat sheets to see what is possible with R.

• Posit’s collection of cheat sheets3 cover some important newer packages in R.
• An old-school cheat sheet4 for dinosaurs and people wishing to go deeper.
• A Bioconductor cheat sheet5 for biological data.
• The R Graph Gallery6 for visual inspiration.
• The R Graphics Cookbook7

6.3 Find packages for specific data types

• CRAN8 contains over 20,000 R packages.
• The CRAN task views9 provide recommendations for specific topics.
• Bioconductor10 is another package repository, specfically for working with high-

throughput biological data.

1https://r4ds.hadley.nz/
2https://cran.r-project.org/manuals.html
3https://posit.co/resources/cheatsheets/
4https://cran.r-project.org/doc/contrib/Short-refcard.pdf
5http://mikelove.github.io/bioc-refcard/
6https://r-graph-gallery.com/
7https://r-graphics.org/
8https://cran.r-project.org/
9https://cran.r-project.org/web/views/

10https://www.bioconductor.org

56

https://r4ds.hadley.nz/
https://cran.r-project.org/manuals.html
https://posit.co/resources/cheatsheets/
https://cran.r-project.org/doc/contrib/Short-refcard.pdf
http://mikelove.github.io/bioc-refcard/
https://r-graph-gallery.com/
https://r-graphics.org/
https://cran.r-project.org/
https://cran.r-project.org/web/views/
https://www.bioconductor.org

6.4 Some pointers on models and statistics

Statistical tasks such as model fitting, hypothesis testing, confidence interval calculation, and
prediction are a large part of R, and one we haven’t demonstrated fully today.

For any standard statistical test, there will usually be an R function to perform it. Examples
include t.test from the previous sections, and also wilcox.test, fisher.test, chisq.test,
and cor.test. Before applying these functions, you may need to use the methods we’ve learned
today to subset and transform your data, or perform some preliminary summarization such as
averaging technical replicates. To make sure there are no problems that might invalidate the
results from these tests, always visualize your data. If you are performing many tests, adjust
for multiple testing with p.adjust.

Going beyond this, linear models and the linear model formula syntax ~ are core to much
of what R has to offer statistically. Many statistical techniques take linear models as their
starting point, including limma11 for differential gene expression, glm for logistic regression
and generalized linear models, survival analysis with coxph, and mixed models to characterize
variation within populations. I have developed some workshop material on linear models,
available here12.

• “Statistical Models in S” by J.M. Chambers and T.J. Hastie is the primary reference for
this, although there are some small differences between R and its predecessor S.

– The emmeans13 package will allow you to sensibly interpret models you obtain.
Directly interpreting coefficients in models is sometimes misleading. This package
fills in the interpretation step, filling in a missing piece of the original framework.

• “An Introduction to Statistical Learning”14 by G. James, D. Witten, T. Hastie and R.
Tibshirani can be seen as further development of the ideas in “Statistical Models in S”,
and is available online. It has more of a machine learning than a statistics flavour to it.
(The distinction is fuzzy!)

• “Modern Applied Statistics with S” by W.N. Venable and B.D. Ripley is a well respected
reference covering R and S.

• “Linear Models with R” and “Extending the Linear Model with R” by J. Faraway15 cover
linear models, with many practical examples.

• Machine learning is a whole further world of packages…

11https://bioconductor.org/packages/release/bioc/html/limma.html
12https://monashdatafluency.github.io/r-linear/
13https://cran.r-project.org/web/packages/emmeans/index.html
14https://www.statlearning.com/
15https://julianfaraway.github.io/faraway/

57

https://bioconductor.org/packages/release/bioc/html/limma.html
https://monashdatafluency.github.io/r-linear/
https://cran.r-project.org/web/packages/emmeans/index.html
https://www.statlearning.com/
https://julianfaraway.github.io/faraway/

• The Carpentries16 run workshops on scientific computing and data science topics world-
wide. The style of this present workshop is very much based on theirs. Their material is
all available on their website.

• Many further resources and tutorials exist online.

16https://carpentries.org/

58

https://carpentries.org/

	Introduction
	Source code
	Authors and copyright

	Starting out in R
	Variables
	Saving code in an R script
	Vectors
	Types of vector
	Indexing vectors
	Challenge: indexing

	Sequences
	Functions

	Data frames
	Setting up
	Loading data
	Exploring
	Indexing data frames
	Columns are vectors
	Quiz: reading R code

	Logical indexing
	Challenge: logical indexing
	A dplyr shorthand

	Factors
	Readability vs tidyness
	Sorting
	Joining data frames
	Quiz

	Further reading

	Plotting with ggplot2
	Elements of a ggplot
	Challenge: make a ggplot

	Further geoms
	Highlighting subsets
	Discussion: look at the plot

	Fine-tuning a plot
	Challenge: refine your ggplot

	Faceting
	Challenge: facet your ggplot

	Saving ggplots

	Summarizing data
	Summary functions
	Missing values
	Grouped summaries
	Challenge: summarizing

	t-test

	Thinking in R
	Lists
	Other types not covered here
	Programming

	Next steps
	Deepen your understanding
	Expand your vocabulary
	Find packages for specific data types
	Some pointers on models and statistics

